oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
A Novel Miniaturized Bandpass Filter Based on Complementary Split Ring Resonators (Csrrs) and Open-Loop Resonators
Mohammad Keshvari;Majid Tayarani
PIER Letters , 2011, DOI: 10.2528/PIERL11033001
Abstract: A microstrip bandpass filter is presented based on Complementary Split Ring Resonators (CSRRs) and a pair of open-loop resonators that has a single pair of transmission zeros at finite frequencies that causes an improvement at skirt response. An equivalent circuit is introduced to make analysis and optimization faster. Finally a filter is designed using the proposed cell and the simulation results with both equivalent model and full wave analysis are in very good agreement. The filter was fabricated and the measurement result was also in good agreement with simulation results. Besides, the size of the designed filter is very small and it occupies an area less than 0.23λg × 0.16λg, where λg is the guided wavelength at the midband frequency.
Dual-Band Bandpass Filter with Controllable Characteristics Using Stub-Loaded Resonators
Fu-Chang Chen;Jie Ming Qiu
PIER Letters , 2012, DOI: 10.2528/PIERL11100904
Abstract: A compact microstrip-line dual-band bandpass filter with controllable characteristics is presented using a stub-loaded resonator. The resonator is formed by loading one open circuit terminated stub in shunt to a simple uniform impedance line. The passband frequencies of the dual-band filter can be conveniently controlled by tuning the lengths of stub-loaded resonators. The bandwidth of the first passband can be controlled by tuning the parameters of center stub-loaded resonator, and the bandwidth of the second passband is determined by the coupling between the sideward stub-loaded resonators. To illustrate the concept, a second-order dual-band filter is designed, fabricated and measured. Simulated and measured results are found in good agreement with each other.
Compact Microstrip Bandpass Filter Using Miniaturized Hairpin Resonator
Sungyun Jun;Kai Chang
PIER Letters , 2013, DOI: 10.2528/PIERL12120510
Abstract: A compact microstripbandpass filter using miniaturized hairpin resonators is presented in this letter. Two modified stepped impedance hairpin resonators connected by parallel coupling are designed for the bandpass filter. The proposed miniaturized hairpin resonator is composed of amicrostrip line and rectangular ring structures between parallel high impedance lines. A big capacitance in the hairpin resonator is provided by the gaps ofrectangular ring structures in the parallel high impedance lines. Therefore, the proposed bandpass filter using the hairpin resonators has a low insertion loss, low return loss and compact size. The proposed bandpass filter with acenter frequency of4.96GHz is designed with EM full wave simulator IE3D andverified with experiment.
Novel Miniaturized Bandpass Filters Using Spiral-Shaped Resonators and Window Feed Structures
Gaole Dai;Mingyao Xia
PIER , 2010, DOI: 10.2528/PIER09120401
Abstract: In this paper, we present a new class of miniaturized microstrip bandpass filters with low-insertion loss, sharp-rejection and narrow-band performance. The proposed filters are composed of two spiral-shaped resonators and rectangle window feed structures. Both back-to-back and interdigital combinations of the resonators are adopted to obtain the miniaturized filter size. Compared to the traditional square loop bandpass filter, the sizes are reduced by 82% and 80%. It is also found that there is a pair of transmission zeros located on each side of the passbands, resulting in high selectivity. To validate the proposed idea, two demonstration filters with back-to-back and interdigital spiral-shaped resonators are implemented. The measured results exhibit good agreement with the full-wave simulation results.
Broadband Microstrip Bandpass Filter Based on Open Complementary Split Ring Resonators  [PDF]
P. Vélez,J. Naqui,M. Durán-Sindreu,J. Bonache,F. Martín
International Journal of Antennas and Propagation , 2012, DOI: 10.1155/2012/174023
Abstract: Broadband bandpass filters based on open complementary split ring resonators (OCSRRs) coupled through admittance inverters, and implemented in microstrip technology, are reported. As compared to other broadband filters based on open split ring resonators (OSRRs), ground plane etching is not necessary in the proposed filters. The selectivity of the filters at the upper transition band is improved thanks to the presence of a controllable transmission zero. To demonstrate the potential of this approach, two illustrative prototype devices have been designed and fabricated. 1. Introduction Metamaterials have been a subject of increasing interest in the last decade. Soon after the synthesis of the first left-handed metamaterial based on a combination of metallic posts and split ring resonators (SRRs) in 2000 [1], the first works devoted to extend the properties and concepts of metamaterials to the design of microwave circuits in planar technology came into the scene [2–5]. In particular, it was demonstrated in [5] that a coplanar waveguide (CPW) transmission line loaded with SRRs [6] and shunt metallic strips exhibits a bandpass functionality with backward (or left-handed) wave propagation in the first allowed band. The CPW-based structure reported in [5] was the planar analog of the bulk structure reported in [1] and was the seed for further design of microwave filters based on SRRs, on their complementary counterparts (the complementary split ring resonator—CSRR [7]), or on other metamaterial resonators [8–18]. The filters reported in [8–18] are based on closed resonators (SRRs or CSRRs) coupled to a host line. However, filters based on electrically small open resonators, like the open split ring resonator (OSRR) [19], or the open complementary split ring resonator (OCSRR), [20] have also been reported [21–25]. As compared to SRRs/CSRRs, the open resonators (OSRRs/OCSRRs) are electrically smaller by a factor of two [19, 20, 26]. Moreover, OSRRs and OCSRR are intrinsically wideband resonators (the reason for that is that, as compared to SRRs or CSRRs, OSRRs and OCSRRs exhibit high C/L and L/C ratios, resp., due to their topology, and this favors broadband responses); therefore, these open resonators are of interest for the implementation of moderate and wideband bandpass filters. It is remarkable that order-3 [27], order-5 [28], and order-7 [29] Chebyshev bandpass filters based on a combination of OSRRs and OCSRRs have been designed and fabricated. In such filters, the OSRRs and the OCSRRs are described by means of series and parallel resonators,
Analysis and Design of Highly Compact Bandpass Waveguide Filter Using Complementary Split Ring Resonators(CSRR)
Hadi Bahrami;Mohammad Hakkak;Abbas Pirhadi
PIER , 2008, DOI: 10.2528/PIER07111203
Abstract: Split Ring Resonators (SRR) and Complementary Split Ring Resonators (CSRR) are widely used to design metamaterial structures. These structures when excited by suitable electromagnetic fields have resonance behavior and show unusual properties such as negative permeability and permittivity near the resonance frequency region. In this paper, CSRRs are used to design a bandpass waveguide filter in the X-band. The circuit model of these elements in the waveguide is similar to parallel L and C components that are placed in parallel form in a transmission line. Resonance frequency and bandwidth of LC resonance circuit are adjusted by proper choice of the CSRR geometrical dimensions. Then, to design the miniaturized filter these structures are combined with proper admittance inverter. The admittance inverter is designed such that its electric length is very smaller than the conventional λ/4 transmission line. As a result, a filter is compacted about 66% in comparison to the λ/4 transmission line as admittance inverter. Simulation results by Ansoft HFSS (Based on the Finite Element Method) confirm the results of filter circuit model.
Compact Dual-Band Bandpass Filter Using Improved Split Ring Resonators Based on Stepped Impedance Resonator
Liang Zhou;Shaobin Liu;Hai Feng Zhang;Xiang-Kun Kong;Ya-Nan Guo
PIER Letters , 2011, DOI: 10.2528/PIERL11030402
Abstract: In this letter, a compact planer dual-band bandpass filter(BPF) using novel split-ring resonators (SRRs) is proposed. Compared with conventional SRRs, the stepped impedance split ring resonator (SIR-SRR) has better performance on miniaturization. To verify good characteristics of the novel structure, a new resonator-embedded cross-coupled filter, constructed by a pair of new resonators, is designed. This new filter has good characteristics of compact size and high selectivity. The improved SRR unit cell has a size of 0.108λ×0.108λ (where λ is the guided wavelength) at central frequency (2.25 GHz) of upper passband. Simulated results show that two central frequencies of the filter locate at 1.90 and 2.25 GHz with 3-dB fractional bandwidths of 1.0% and 7.7%, respectively. The lower passband band is generated by inner resonator with a via hole to gound plane, while the upper passband is created by outer resonator. Moreover, a good out-band performance is shown in this letter. Its stop-bands are extended 0-1.85 GHz at lower band and 2.4-5.8 GHz at upper band with a rejection level of about 20-dB. The measured and simulated results are well complied with each other.
Compact Third-Order Microstrip Bandpass Filter Using Hybrid Resonators
Fei Xiao;Martin Norgren;Sailing He
PIER C , 2011, DOI: 10.2528/PIERC10092706
Abstract: In this paper, a novel microwave bandpass filter structure is proposed. By introducing a metallic via hole, the filter structure operates as one λ/2 and two λ/4 uniform impedance resonators and consequently form a triplet coupling scheme. The equivalent circuit model is analyzed in detail, which shows that there is a transmission zero in the low stopband. Based on that concept, three microstrip filters are designed, fabricated and measured, respectively. The first filter has no source/load coupling and only one transmission zero is created. By introducing source/load coupling, the second filter can create three transmission zeros. The third filter can create a controllable transmission zero in upper stopband. The simulated and measured results agree very well.
Third-Order Dual-Band Bandpass Filter with Controllable Bandwidths Using Short Stub-Loaded Resonators
Fu-Chang Chen;Jie Ming Qiu
PIER Letters , 2012, DOI: 10.2528/PIERL12050105
Abstract: A compact microstrip-line dual-band bandpass filter using a short stub-loaded resonator is presented. The resonator is formed by loading one short stub in shunt to a simple uniform impedance line. A key merit of the filter configuration is that the center frequency and bandwidth of the first passband can be conveniently controlled by properly adjusting the lengths of the short stubs and the coupling between the short stubs, whereas those of the second passband are fixed. To illustrate the concept, a third-order dual-band filter is designed, fabricated and measured. Simulated and measured results are found to be in good agreement with each other.
A Compact UWB Hmsiw Bandpass Filter Based on Complementary Split-Ring Resonators
Li Qiang;Yong-Jiu Zhao;Quan Sun;Wei Zhao;Bing Liu
PIER C , 2009, DOI: 10.2528/PIERC09112102
Abstract: A novel complementary split ring resonators (CSRR) is applied to realize a compact Ultra-Wide Band (UWB) bandpass filter based on half-mode substrate integrated waveguide (HMSIW) in this paper. Sharpened rejection skirts and widened upper stopband are achieved due to the two resonant frequencies of the proposed CSRR. Very good agreement is observed between measurement and simulation results.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.