Abstract:
The properties of hadron screening masses around the deconfinement phase transition at finite baryonic density can be studied by evaluating the Taylor coefficients with respect to the iso-scalar and iso-vector chemical potentials. We simulate 2-flavour lattice QCD with staggered fermions on a 12*12*24*6 lattice with ma = 0.05 and 0.10 and report investigations of nucleon, pseudo-scalar and vector mesons. We present new, strong evidence that in the confining phase, the screening masses at vanishing chemical potential have significant temperature dependence, but the effect of the iso-scalar chemical potential is very small. Above the critical temperature, the second derivative terms of mesons rapidly increase as contrasted to the case of baryon. We also study the responses of the screening masses to an iso-vector chemical potential and discuss some of the issues related to the properties of hadron masses at finite density.

Abstract:
We study the flavour singlet mesons from first principles using lattice QCD. We explore the splitting between flavour singlet and non-singlet for vector and axial mesons as well as the more commonly studied cases of the scalar and pseudoscalar mesons.

Abstract:
We study properties of pseudoscalar flavour-singlet mesons from Wilson twisted mass lattice QCD with Nf=2+1+1 dynamical quark flavors. Results for masses are presented at three values of the lattice spacing and light quark masses corresponding to values of the pion mass from 230 MeV to 500 MeV. We briefly discuss scaling effects and the light and strange quark mass dependence of the eta mass. In addition we present an exploratory study using Osterwalder-Seiler type strange and charm valence quarks. This approach avoids some of the complications of the twisted mass heavy doublet. We present first results for matching valence and unitary actions and a comparison of statistical uncertainties.

Abstract:
We present results for screening masses of mesons built from light and strange quarks in the temperature range of approximately between 140 MeV to 800 MeV. The lattice computations were performed with 2+1 dynamical light and strange flavors of improved (p4) staggered fermions along a line of constant physics defined by a pion mass of about 220 MeV and a kaon mass of 500 MeV. The lattices had temporal extents Nt = 4, 6 and 8 and aspect ratios of Ns / Nt \geq 4. At least up to a temperature of 140 MeV the pseudo-scalar screening mass remains almost equal to the corresponding zero temperature pseudo-scalar (pole) mass. At temperatures around 3Tc (Tc being the transition temperature) the continuum extrapolated pseudo-scalar screening mass approaches very close to the free continuum result of 2 \pi T from below. On the other hand, at high temperatures the vector screening mass turns out to be larger than the free continuum value of 2 \pi T. The pseudo-scalar and the vector screening masses do not become degenerate even for a temperature as high as 4Tc. Using these mesonic spatial correlation functions we have also investigated the restoration of chiral symmetry and the effective restoration of the axial symmetry. We have found that the vector and the axial-vector screening correlators become degenerate, indicating chiral symmetry restoration, at a temperature which is consistent with the QCD transition temperature obtained in previous studies. On the other hand, the pseudo-scalar and the scalar screening correlators become degenerate only at temperatures larger than 1.3Tc, indicating that the effective restoration of the axial symmetry takes place at a temperature larger than the QCD transition temperature.

Abstract:
One-flavour QCD - a gauge theory with SU(3) colour gauge group and a fermion in the fundamental representation - is studied by Monte Carlo simulations. The mass spectrum of hadronic bound states is investigated in a volume with extensions of L ~ 4.4r_0 (~2.2fm) at two different lattice spacings: a ~ 0.37r_0 (~0.19fm) and a ~ 0.27r_0 (~0.13fm). The lattice action is Symanzik tree-level-improved Wilson action for the gauge field and (unimproved) Wilson action for the fermion.

Abstract:
We review the present status for the determinations of the light and heavy quark masses, the light quark chiral condensate and the decay constants of light and heavy-light (pseudo)scalar mesons from QCD spectral sum rules (QSSR). Bounds on the light quark running masses at 2 GeV are found to be: 6 MeV<(m_d+m_u)(2)<11 MeV and 71 MeV/=0.66\pm 0.10. The last section is dedicated to the QSSR determinations of f_{D_{(s)}} and f_{B_{(s)}}.

Abstract:
We perform a lattice mass analysis in the flavour singlet pseudoscalar channel on the SESAM and TXL full QCD vacuum configurations, with 2 active flavours of dynamical Wilson fermions at beta = 5.6. At our inverse lattice spacing, a^-1 = 2.3 GeV, we retrieve by a chiral extrapolation to the physical light quark masses the value m_eta' = 3.7(+8)(-4) m_pi. A crude extrapolation from (N_f = 3) phenomenology would suggest m_eta' \approx 5.1 m_pi for N_f = 2 QCD. we verify that the mass gap between the singlet state eta' and the pi flavour triplt state is due to gauge configurations with non-trivial topology.

Abstract:
The increasing focus on unquenched lattice simulations has revived interest also in gluonic screening masses, whose inverses characterise the longest length scales at which thermal fluctuations are correlated in a hot non-Abelian plasma. We fill an apparent gap in the literature concerning the theoretical structure of one of the relevant screening masses (the one which equals twice the Debye mass at leading order), by showing that the next-to-leading order correction to it is perturbative and small. This surprising result appears to explain semi-quantitatively why this particular channel yields the smallest gluonic screening mass at temperatures around a few hundred MeV (it couples to the energy density and to the real part of the Polyakov loop), even though it is not among the smallest screening masses at asymptotically high temperatures.

Abstract:
We analyze the quark mass and flavour dependence of the QCD phase transition temperature. When the lightest pseudo-scalar meson mass (m_PS) is larger than 2 GeV the critical temperature is controlled by the gluonic sector of QCD alone. For smaller values of the lightest meson mass the pseudo-critical temperature decreases slowly with m_PS. For a large regime of meson masses the pseudo-critical temperature of 2-flavour QCD is about 10% larger than in the 3-flavour case. On lattices with temporal extent N_t=4 an extrapolation to the chiral limit yields T_c = 173(8) MeV and 154(8) MeV for 2 and 3-flavour QCD, respectively. We also analyze dynamical quark mass effects on the screening of the heavy quark potential. A detailed analysis of the heavy quark free energy in 3-flavour QCD shows that close to T_c screening effects are approximately quark mass independent already for pseudo-scalar meson masses m_PS = 800 MeV and screening sets in at distances r = 0.3 fm.

Abstract:
We apply spectral methods to compute the OZI-rule suppressed loop-loop correlators in the pseudoscalar meson flavour singlet channel. Using SESAM configurations (obtained with two degenerate sea quark flavours on 16x16x16x32 lattices at beta = 5.6 with standard Wilson action), we find for the first time clear evidence for mass plateau formation in the eta' channel of this theory. As a consequence, we observe a clear signal of a mass gap persistent under chiral extrapolation. This sets the stage for a more realistic two-channel approach, where partially quenched strange quarks would be included, in addition to u, d sea quarks.