oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Current Status and Outlook in the Application of Microalgae in Biodiesel Production and Environmental Protection  [PDF]
Junfeng Rong,Hui Chen,Qiang Wang
Frontiers in Energy Research , 2014, DOI: 10.3389/fenrg.2014.00032
Abstract: Microalgae have been currently recognized as a group of the most potential feedstocks for biodiesel production due to high productivity potential, efficient biosynthesis of lipids, and less competition with food production. Moreover, utilization of microalgae with environmental purposes (CO2 fixation, NOx, and wastewater treatment) and biorefinery has been reported. However, there are still challenges that need to be addressed to ensure stable large-scale production with positive net energy balance. This review gives an overview of the current status of the application of microalgae in biodiesel production and environmental protection. The practical problems not only facing the microalgae biodiesel production but also associated with microalgae application for environmental pollution control, in particular biological fixation of greenhouse gas (CO2 and NOx) and wastewater treatment are described in detail. Notably, the synergistic combination of various applications (e.g., food, medicine, wastewater treatment, and flue gas treatment) with biodiesel production could enhance the sustainability and economics of the algal biodiesel production system.
Microalgae Lipid and Biodiesel Production: A Brazilian Challenge  [PDF]
Carolina T. Miranda, Roberta F. Pinto, Daniel V. N. de Lima, Carolina V. Viegas, Simone M. da Costa, Sandra M. F. O. Azevedo
American Journal of Plant Sciences (AJPS) , 2015, DOI: 10.4236/ajps.2015.615254
Abstract: Global increases in atmospheric CO2 and climate change are drawing considerable attention to identify sources of energy with lower environmental impact than those currently in use. Biodiesel production from microalgae lipids can, in the future, occupy a prominent place in energy generation because it represents a sustainable alternative to petroleum-based fuels. Several species of microalgae produce large amounts of lipids per biomass unit. Triacylglycerol is the fatty acid used for biodiesel production and the main source of energy reserves in microalgae. The current literature indicates that nutrient limitations can lead to triacylglycerol accumulation in different species of microalgae. Further efforts in microalgae screening for biodiesel production are needed to discover a native microalgae that will be feasible for biodiesel production in terms of biomass productivity and oil. This revision focuses in the biotechnological potential and viability of biodiesel production from microalgae. Brazil is located in a tropical region with high light rates and adequate average temperatures for the growth of microalgae. The wide availability of bodies of water and land will allow the country to produce renewable energy from microalgae.
Potency of Microalgae as Biodiesel Source in Indonesia  [cached]
H Hadiyanto,W Widayat,Andri Cahyo Kumoro
International Journal of Renewable Energy Development (IJRED) , 2012,
Abstract: Within 20 years, Indonesia should find another energy alternative to substitute current fossil oil. Current use of renewable energy is only 5% and need to be improved up to 17% of our energy mix program. Even though, most of the area in Indonesia is covered by sea, however the utilization of microalgae as biofuel production is still limited. The biodiesel from current sources (Jatropha, palm oil, and sorghum) is still not able to cover all the needs if the fossil oil cannot be explored anymore. In this paper, the potency of microalgae in Indonesia was analysed as the new potential of energy (biodiesel) sources.
TUBULAR PHOTOBIOREACTOR FOR MICROALGAE BIODIESEL PRODUCTION  [PDF]
Nkongolo Mulumba,Ihab H. Farag
International Journal of Engineering Science and Technology , 2012,
Abstract: Biodiesel production from algae is a promising technique. Microalgae have the potential to produce 5,000-15,000 gallons of biodiesel/(acre-year). However, there are challenges; these include high yieldof algae biomass with high lipid content and the effective technique to harvest the grown algae, extract the algal oil and transesterify the oil to biodiesel. In this project Tubular PhotoBioReactor (TPBR) was designed and achieved a ten times increase in algae concentration. It produced 1g of dry algal biomass per liter of medium within 12 days, with a lipid content of 12% approximately. Healthy algal culture grew well in the TPBR reaching 56x106 cells/mL of culture medium. The 10 fold increase is higher than those reported for open ponds and helical photobioreactor.
Microalgae Isolation and Selection for Prospective Biodiesel?Production  [PDF]
Van Thang Duong,Yan Li,Ekaterina Nowak,Peer M. Schenk
Energies , 2012, DOI: 10.3390/en5061835
Abstract: Biodiesel production from microalgae is being widely developed at different scales as a potential source of renewable energy with both economic and environmental benefits. Although many microalgae species have been identified and isolated for lipid production, there is currently no consensus as to which species provide the highest productivity. Different species are expected to function best at different aquatic, geographical and climatic conditions. In addition, other value-added products are now being considered for commercial production which necessitates the selection of the most capable algae strains suitable for multiple-product algae biorefineries. Here we present and review practical issues of several simple and robust methods for microalgae isolation and selection for traits that maybe most relevant for commercial biodiesel production. A combination of conventional and modern techniques is likely to be the most efficient route from isolation to large-scale cultivation.
High Lipid Induction in Microalgae for Biodiesel Production  [PDF]
Kalpesh K. Sharma,Holger Schuhmann,Peer M. Schenk
Energies , 2012, DOI: 10.3390/en5051532
Abstract: Oil-accumulating microalgae have the potential to enable large-scale biodiesel production without competing for arable land or biodiverse natural landscapes. High lipid productivity of dominant, fast-growing algae is a major prerequisite for commercial production of microalgal oil-derived biodiesel. However, under optimal growth conditions, large amounts of algal biomass are produced, but with relatively low lipid contents, while species with high lipid contents are typically slow growing. Major advances in this area can be made through the induction of lipid biosynthesis, e.g., by environmental stresses. Lipids, in the form of triacylglycerides typically provide a storage function in the cell that enables microalgae to endure adverse environmental conditions. Essentially algal biomass and triacylglycerides compete for photosynthetic assimilate and a reprogramming of physiological pathways is required to stimulate lipid biosynthesis. There has been a wide range of studies carried out to identify and develop efficient lipid induction techniques in microalgae such as nutrients stress (e.g., nitrogen and/or phosphorus starvation), osmotic stress, radiation, pH, temperature, heavy metals and other chemicals. In addition, several genetic strategies for increased triacylglycerides production and inducibility are currently being developed. In this review, we discuss the potential of lipid induction techniques in microalgae and also their application at commercial scale for the production of biodiesel.
Hedgehog pathway inhibitors – current status and future prospects  [cached]
Sheikh Asfandyar,Alvi Arsalan,Aslam Hafiz,Haseeb Abdul
Infectious Agents and Cancer , 2012, DOI: 10.1186/1750-9378-7-29
Abstract: The Hedgehog (Hh) proteins comprise a group of secreted proteins that regulate cell growth, differentiation and survival. Inappropriate activation of the Hh signaling pathway has been implicated in the development of a variety of cancers. Hedgehog pathway inhibitors are a relatively new class of therapeutic agents that act by targeting the proteins involved in the regulation of Hh pathway (PTCH, SMO and Gli). Together, they serve as exciting new prospects, with a bright future, both alone or as an adjuvant to the more traditional anti-cancer drugs.
Product ecodesign and materials: current status and future prospects  [PDF]
Fabrice Mathieux,Daniel Brissaud,Peggy Zwolinski
Physics , 2007,
Abstract: The aim of this paper is to discuss the current status of ecodesign in the industry and its future implications for materials. There is today more and more focus on the environmental impacts of products during their whole life cycle. In particular, ecodesign aims at integrating environmental aspects during the product's design process as any other criterion, in order to reduce the life cycle impacts. Although a lot of product environmental impact assessment and Design for Environment tools already exist, environmental aspects are unfortunately rarely routinely integrated into product development process in the industry. This is mainly due to the fact that current ecodesign tools are little adapted to designers' practices, requirements and competencies. After the sequential and DfX paradigms, design of products is today maturing into Integrated Design, where multiple points of views and expertise have to be considered at the same time to progressively define the product.
Progress in microalgae culture system for biodiesel combined with reducing carbon dioxide emission
二氧化碳减排产柴油微藻培养体系研究进展

Hongyang Su,Xuefei Zhou,Xuefen Xi,Zhen Sun,Yalei Zhang,
苏鸿洋
,周雪飞,夏雪芬,孙振,张亚雷

生物工程学报 , 2011,
Abstract: Wastewater resources, CO2 emission reduction and microalgae biodiesel are considered as current frontier fields of energy and environmental researches. In this paper, we reviewed the progress in system of microalgae culture for biodiesel production by wastewater and stack gas. Multiple factors including microalgal species, nutrition, culture methods and photobioreactor, which were crucial to the cultivation of microalgae for biodiesel production, were discussed in detail. A valuable culture system of microalgae for biodiesel production or other high value products combined with the treatment of wastewater by microalgae was put forward through the optimizations of algal species and culture technology. The culture system coupled with the treatment of wastewater, the reduction of CO2 emission with the cultivation of microalgae for biodiesel production will reduce the production cost of microalgal biofuel production and the treatment cost of wastewater simultaneously. Therefore, it would be a promising technology with important environmental value, social value and economic value to combine the treatment of wastewater with the cultivation of microalgae for biodiesel production.
THE CROATIAN FRESHWATER FISHERY - CURRENT STATUS AND PROSPECTS  [PDF]
Kre?imir Pa?ur
Ribarstvo : Croatian Journal of Fisheries , 2001,
Abstract: Freshwater fishery in, objectively speaking, a modest sector of agriculture characteristic for its extreme production aspects, i. e. one of the most intensive agricultural sector are the trout ponds with over 140 ton of fish a year per 1 ha of water surface, the carp ponds with about 500 kg/ha are semi-intensive sector, while the management of over 60,000 ha of open water is completely extensive with catch less than 10 kg/ha, so such waters are used only for sport and recreation. The paper will analyse both subjective and objective causes of the current situation and propose the measures that might gain a high income-earning position for the sector in different economic categories, since the conditions for such development are realistic.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.