oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
An Approximation of the Universal Intelligence Measure  [PDF]
Shane Legg,Joel Veness
Computer Science , 2011,
Abstract: The Universal Intelligence Measure is a recently proposed formal definition of intelligence. It is mathematically specified, extremely general, and captures the essence of many informal definitions of intelligence. It is based on Hutter's Universal Artificial Intelligence theory, an extension of Ray Solomonoff's pioneering work on universal induction. Since the Universal Intelligence Measure is only asymptotically computable, building a practical intelligence test from it is not straightforward. This paper studies the practical issues involved in developing a real-world UIM-based performance metric. Based on our investigation, we develop a prototype implementation which we use to evaluate a number of different artificial agents.
Extending Universal Intelligence Models with Formal Notion of Representation  [PDF]
Alexey Potapov,Sergey Rodionov
Computer Science , 2013,
Abstract: Solomonoff induction is known to be universal, but incomputable. Its approximations, namely, the Minimum Description (or Message) Length (MDL) principles, are adopted in practice in the efficient, but non-universal form. Recent attempts to bridge this gap leaded to development of the Representational MDL principle that originates from formal decomposition of the task of induction. In this paper, possible extension of the RMDL principle in the context of universal intelligence agents is considered, for which introduction of representations is shown to be an unavoidable meta-heuristic and a step toward efficient general intelligence. Hierarchical representations and model optimization with the use of information-theoretic interpretation of the adaptive resonance are also discussed.
Open Ended Intelligence: The individuation of Intelligent Agents  [PDF]
David Weinbaum,Viktoras Veitas
Computer Science , 2015,
Abstract: Artificial General Intelligence is a field of research aiming to distill the principles of intelligence that operate independently of a specific problem domain or a predefined context and utilize these principles in order to synthesize systems capable of performing any intellectual task a human being is capable of and eventually go beyond that. While "narrow" artificial intelligence which focuses on solving specific problems such as speech recognition, text comprehension, visual pattern recognition, robotic motion, etc. has shown quite a few impressive breakthroughs lately, understanding general intelligence remains elusive. In the paper we offer a novel theoretical approach to understanding general intelligence. We start with a brief introduction of the current conceptual approach. Our critique exposes a number of serious limitations that are traced back to the ontological roots of the concept of intelligence. We then propose a paradigm shift from intelligence perceived as a competence of individual agents defined in relation to an a priori given problem domain or a goal, to intelligence perceived as a formative process of self-organization by which intelligent agents are individuated. We call this process open-ended intelligence. Open-ended intelligence is developed as an abstraction of the process of cognitive development so its application can be extended to general agents and systems. We introduce and discuss three facets of the idea: the philosophical concept of individuation, sense-making and the individuation of general cognitive agents. We further show how open-ended intelligence can be framed in terms of a distributed, self-organizing network of interacting elements and how such process is scalable. The framework highlights an important relation between coordination and intelligence and a new understanding of values. We conclude with a number of questions for future research.
Universal Intelligence: A Definition of Machine Intelligence  [PDF]
Shane Legg,Marcus Hutter
Computer Science , 2007,
Abstract: A fundamental problem in artificial intelligence is that nobody really knows what intelligence is. The problem is especially acute when we need to consider artificial systems which are significantly different to humans. In this paper we approach this problem in the following way: We take a number of well known informal definitions of human intelligence that have been given by experts, and extract their essential features. These are then mathematically formalised to produce a general measure of intelligence for arbitrary machines. We believe that this equation formally captures the concept of machine intelligence in the broadest reasonable sense. We then show how this formal definition is related to the theory of universal optimal learning agents. Finally, we survey the many other tests and definitions of intelligence that have been proposed for machines.
Cognitive Bias for Universal Algorithmic Intelligence  [PDF]
Alexey Potapov,Sergey Rodionov,Andrew Myasnikov,Galymzhan Begimov
Computer Science , 2012,
Abstract: Existing theoretical universal algorithmic intelligence models are not practically realizable. More pragmatic approach to artificial general intelligence is based on cognitive architectures, which are, however, non-universal in sense that they can construct and use models of the environment only from Turing-incomplete model spaces. We believe that the way to the real AGI consists in bridging the gap between these two approaches. This is possible if one considers cognitive functions as a "cognitive bias" (priors and search heuristics) that should be incorporated into the models of universal algorithmic intelligence without violating their universality. Earlier reported results suiting this approach and its overall feasibility are discussed on the example of perception, planning, knowledge representation, attention, theory of mind, language, and some others.
Open Access Intelligence  [PDF]
Paul De Boeck
Journal of Intelligence , 2013, DOI: 10.3390/jintelligence1010001
Abstract: The Journal of Intelligence is a journal devoted to the study of human intelligence. Intelligence is a remarkable and highly intriguing phenomenon, and a core feature of our being humans. Understanding our intelligence is a major part of understanding ourselves. Human intelligence is studied from many perspectives and for different purposes. The basic issues in this study can be organized as follows: where does intelligence come from, what is it, what are its correlates and consequences? [...]
Bad Universal Priors and Notions of Optimality  [PDF]
Jan Leike,Marcus Hutter
Computer Science , 2015,
Abstract: A big open question of algorithmic information theory is the choice of the universal Turing machine (UTM). For Kolmogorov complexity and Solomonoff induction we have invariance theorems: the choice of the UTM changes bounds only by a constant. For the universally intelligent agent AIXI (Hutter, 2005) no invariance theorem is known. Our results are entirely negative: we discuss cases in which unlucky or adversarial choices of the UTM cause AIXI to misbehave drastically. We show that Legg-Hutter intelligence and thus balanced Pareto optimality is entirely subjective, and that every policy is Pareto optimal in the class of all computable environments. This undermines all existing optimality properties for AIXI. While it may still serve as a gold standard for AI, our results imply that AIXI is a relative theory, dependent on the choice of the UTM.
One Decade of Universal Artificial Intelligence  [PDF]
Marcus Hutter
Computer Science , 2012,
Abstract: The first decade of this century has seen the nascency of the first mathematical theory of general artificial intelligence. This theory of Universal Artificial Intelligence (UAI) has made significant contributions to many theoretical, philosophical, and practical AI questions. In a series of papers culminating in book (Hutter, 2005), an exciting sound and complete mathematical model for a super intelligent agent (AIXI) has been developed and rigorously analyzed. While nowadays most AI researchers avoid discussing intelligence, the award-winning PhD thesis (Legg, 2008) provided the philosophical embedding and investigated the UAI-based universal measure of rational intelligence, which is formal, objective and non-anthropocentric. Recently, effective approximations of AIXI have been derived and experimentally investigated in JAIR paper (Veness et al. 2011). This practical breakthrough has resulted in some impressive applications, finally muting earlier critique that UAI is only a theory. For the first time, without providing any domain knowledge, the same agent is able to self-adapt to a diverse range of interactive environments. For instance, AIXI is able to learn from scratch to play TicTacToe, Pacman, Kuhn Poker, and other games by trial and error, without even providing the rules of the games. These achievements give new hope that the grand goal of Artificial General Intelligence is not elusive. This article provides an informal overview of UAI in context. It attempts to gently introduce a very theoretical, formal, and mathematical subject, and discusses philosophical and technical ingredients, traits of intelligence, some social questions, and the past and future of UAI.
A Theory of Universal Artificial Intelligence based on Algorithmic Complexity  [PDF]
Marcus Hutter
Mathematics , 2000,
Abstract: Decision theory formally solves the problem of rational agents in uncertain worlds if the true environmental prior probability distribution is known. Solomonoff's theory of universal induction formally solves the problem of sequence prediction for unknown prior distribution. We combine both ideas and get a parameterless theory of universal Artificial Intelligence. We give strong arguments that the resulting AIXI model is the most intelligent unbiased agent possible. We outline for a number of problem classes, including sequence prediction, strategic games, function minimization, reinforcement and supervised learning, how the AIXI model can formally solve them. The major drawback of the AIXI model is that it is uncomputable. To overcome this problem, we construct a modified algorithm AIXI-tl, which is still effectively more intelligent than any other time t and space l bounded agent. The computation time of AIXI-tl is of the order tx2^l. Other discussed topics are formal definitions of intelligence order relations, the horizon problem and relations of the AIXI theory to other AI approaches.
Universal Algorithmic Intelligence: A mathematical top->down approach  [PDF]
Marcus Hutter
Computer Science , 2007,
Abstract: Sequential decision theory formally solves the problem of rational agents in uncertain worlds if the true environmental prior probability distribution is known. Solomonoff's theory of universal induction formally solves the problem of sequence prediction for unknown prior distribution. We combine both ideas and get a parameter-free theory of universal Artificial Intelligence. We give strong arguments that the resulting AIXI model is the most intelligent unbiased agent possible. We outline how the AIXI model can formally solve a number of problem classes, including sequence prediction, strategic games, function minimization, reinforcement and supervised learning. The major drawback of the AIXI model is that it is uncomputable. To overcome this problem, we construct a modified algorithm AIXItl that is still effectively more intelligent than any other time t and length l bounded agent. The computation time of AIXItl is of the order t x 2^l. The discussion includes formal definitions of intelligence order relations, the horizon problem and relations of the AIXI theory to other AI approaches.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.