oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
A past discharges assimilation system for ensemble streamflow forecasts over France – Part 1: Description and validation of the assimilation system
G. Thirel, E. Martin, J.-F. Mahfouf, S. Massart, S. Ricci,F. Habets
Hydrology and Earth System Sciences (HESS) & Discussions (HESSD) , 2010,
Abstract: Two Ensemble Streamflow Prediction Systems (ESPSs) have been set up at Météo-France. They are based on the French SIM distributed hydrometeorological model. A deterministic analysis run of SIM is used to initialize the two ESPSs. In order to obtain a better initial state, a past discharges assimilation system has been implemented into this analysis SIM run, using the Best Linear Unbiased Estimator (BLUE). Its role is to improve the model soil moisture by using streamflow observations in order to better simulate streamflow. The skills of the assimilation system were assessed for a 569-day period on six different configurations, including two different physics schemes of the model (the use of an exponential profile of hydraulic conductivity or not) and, for each one, three different ways of considering the model soil moisture in the BLUE state variables. Respect of the linearity hypothesis of the BLUE was verified by assessing of the impact of iterations of the BLUE. The configuration including the use of the exponential profile of hydraulic conductivity and the combination of the moisture of the two soil layers in the state variable showed a significant improvement of streamflow simulations. It led to a significantly better simulation than the reference one, and the lowest soil moisture corrections. These results were confirmed by the study of the impacts of the past discharge assimilation system on a set of 49 independent stations.
A past discharges assimilation system for ensemble streamflow forecasts over France – Part 1: Description and validation of the assimilation system
G. Thirel,E. Martin,J.-F. Mahfouf,S. Massart
Hydrology and Earth System Sciences Discussions , 2010, DOI: 10.5194/hessd-7-2413-2010
Abstract: Two Ensemble Streamflow Prediction Systems (ESPSs) have been set up at Météo-France. They are based on the French SIM distributed hydrometeorological model. A deterministic analysis run of SIM is used to initialize the two ESPSs. In order to obtain a better initial state, a past discharges assimilation system has been implemented into this analysis SIM run, using the Best Linear Unbiased Estimator (BLUE). Its role is to improve the model soil moisture by using observed streamflows in order to better simulate streamflow. The skills of the assimilation system were assessed for a 569-day period on six different configurations, including two different physics schemes of the model (the use of an exponential profile of hydraulic conductivity or not) and, for each one, three different ways of considering the model soil moisture in the BLUE state variables. Respect of the linearity hypothesis of the BLUE was verified by assessing of the impact of iterations of the BLUE. The configuration including the use of the exponential profile of hydraulic conductivity and the combination of the moisture of the two soil layers in the state variable showed a significant improvement of streamflow simulations. It led to a significantly better simulation than the reference one, and the lowest soil moisture corrections. These results were confirmed by the study of the impacts of the past discharge assimilation system on a set of 49 independent stations.
Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation
C. M. DeChant ,H. Moradkhani
Hydrology and Earth System Sciences (HESS) & Discussions (HESSD) , 2011,
Abstract: Within the National Weather Service River Forecast System, water supply forecasting is performed through Ensemble Streamflow Prediction (ESP). ESP relies both on the estimation of initial conditions and historically resampled forcing data to produce seasonal volumetric forecasts. In the western US, the accuracy of initial condition estimation is particularly important due to the large quantities of water stored in mountain snowpack. In order to improve the estimation of snow quantities, this study explores the use of ensemble data assimilation. Rather than relying entirely on the model to create single deterministic initial snow water storage, as currently implemented in operational forecasting, this study incorporates SNOTEL data along with model predictions to create an ensemble based probabilistic estimation of snow water storage. This creates a framework to account for initial condition uncertainty in addition to forcing uncertainty. The results presented in this study suggest that data assimilation has the potential to improve ESP for probabilistic volumetric forecasts but is limited by the available observations.
Improving the characterization of initial condition for ensemble streamflow prediction using data assimilation
C. M. DeChant,H. Moradkhani
Hydrology and Earth System Sciences Discussions , 2011, DOI: 10.5194/hessd-8-7207-2011
Abstract: Within the National Weather Service River Forecast System, water supply forecasting is performed through Ensemble Streamflow Prediction (ESP). ESP relies both on the estimation of initial conditions and historically resampled forcing data to produce seasonal volumetric forecasts. In the western US, the accuracy of initial condition estimation is particularly important due to the large quantities of water stored in mountain snowpack. In order to improve the estimation of snow quantities, this study explores the use of ensemble data assimilation. Rather than relying entirely on the model to create single deterministic initial snow water storage, as currently implemented in operational forecasting, this study incorporates SNOTEL data along with model predictions to create an ensemble based probabilistic estimation of snow water storage. This creates a framework to account for initial condition uncertainty in addition to forcing uncertainty. The results presented in this study suggest that data assimilation has the potential to improve ESP for probabilistic volumetric forecasts but is limited by the available observations.
Evaluation of bias-correction methods for ensemble streamflow volume forecasts
T. Hashino, A. A. Bradley,S. S. Schwartz
Hydrology and Earth System Sciences (HESS) & Discussions (HESSD) , 2007,
Abstract: Ensemble prediction systems are used operationally to make probabilistic streamflow forecasts for seasonal time scales. However, hydrological models used for ensemble streamflow prediction often have simulation biases that degrade forecast quality and limit the operational usefulness of the forecasts. This study evaluates three bias-correction methods for ensemble streamflow volume forecasts. All three adjust the ensemble traces using a transformation derived with simulated and observed flows from a historical simulation. The quality of probabilistic forecasts issued when using the three bias-correction methods is evaluated using a distributions-oriented verification approach. Comparisons are made of retrospective forecasts of monthly flow volumes for a north-central United States basin (Des Moines River, Iowa), issued sequentially for each month over a 48-year record. The results show that all three bias-correction methods significantly improve forecast quality by eliminating unconditional biases and enhancing the potential skill. Still, subtle differences in the attributes of the bias-corrected forecasts have important implications for their use in operational decision-making. Diagnostic verification distinguishes these attributes in a context meaningful for decision-making, providing criteria to choose among bias-correction methods with comparable skill.
Evaluation of bias-correction methods for ensemble streamflow volume forecasts
T. Hashino,A. A. Bradley,S. S. Schwartz
Hydrology and Earth System Sciences Discussions , 2006,
Abstract: Ensemble prediction systems are used operationally to make probabilistic streamflow forecasts for seasonal time scales. However, hydrological models used for ensemble streamflow prediction often have simulation biases that degrade forecast quality and limit the operational usefulness of the forecasts. This study evaluates three bias-correction methods for ensemble streamflow volume forecasts. All three adjust the ensemble traces using a transformation derived with simulated and observed flows from a historical simulation. The quality of probabilistic forecasts issued when using the three bias-correction methods is evaluated using a distributions-oriented verification approach. Comparisons are made of retrospective forecasts of monthly flow volumes for the Des Moines River, issued sequentially for each month over a 48-year record. The results show that all three bias-correction methods significantly improve forecast quality by eliminating unconditional biases and enhancing the potential skill. Still, subtle differences in the attributes of the bias-corrected forecasts have important implications for their use in operational decision-making. Diagnostic verification distinguishes these attributes in a context meaningful for decision-making, providing criteria to choose among bias-correction methods with comparable skill.
Statistical processing of forecasts for hydrological ensemble prediction: a comparative study of different bias correction strategies
I. Zalachori, M.-H. Ramos, R. Gar on, T. Mathevet,J. Gailhard
Advances in Science and Research (ASR) , 2012, DOI: 10.5194/asr-8-135-2012
Abstract: The aim of this paper is to investigate the use of statistical correction techniques in hydrological ensemble prediction. Ensemble weather forecasts (precipitation and temperature) are used as forcing variables to a hydrologic forecasting model for the production of ensemble streamflow forecasts. The impact of different bias correction strategies on the quality of the forecasts is examined. The performance of the system is evaluated when statistical processing is applied: to precipitation and temperature forecasts only (pre-processing from the hydrological model point of view), to flow forecasts (post-processing) and to both. The pre-processing technique combines precipitation ensemble predictions with an analog forecasting approach, while the post-processing is based on past errors of the hydrological model when simulating streamflows. Forecasts from 11 catchments in France are evaluated. Results illustrate the importance of taking into account hydrological uncertainties to improve the quality of operational streamflow forecasts.
An integrated uncertainty and ensemble-based data assimilation approach for improved operational streamflow predictions
M. He, T. S. Hogue, S. A. Margulis,K. J. Franz
Hydrology and Earth System Sciences (HESS) & Discussions (HESSD) , 2012,
Abstract: The current study proposes an integrated uncertainty and ensemble-based data assimilation framework (ICEA) and evaluates its viability in providing operational streamflow predictions via assimilating snow water equivalent (SWE) data. This step-wise framework applies a parameter uncertainty analysis algorithm (ISURF) to identify the uncertainty structure of sensitive model parameters, which is subsequently formulated into an Ensemble Kalman Filter (EnKF) to generate updated snow states for streamflow prediction. The framework is coupled to the US National Weather Service (NWS) snow and rainfall-runoff models. Its applicability is demonstrated for an operational basin of a western River Forecast Center (RFC) of the NWS. Performance of the framework is evaluated against existing operational baseline (RFC predictions), the stand-alone ISURF and the stand-alone EnKF. Results indicate that the ensemble-mean prediction of ICEA considerably outperforms predictions from the other three scenarios investigated, particularly in the context of predicting high flows (top 5th percentile). The ICEA streamflow ensemble predictions capture the variability of the observed streamflow well, however the ensemble is not wide enough to consistently contain the range of streamflow observations in the study basin. Our findings indicate that the ICEA has the potential to supplement the current operational (deterministic) forecasting method in terms of providing improved single-valued (e.g., ensemble mean) streamflow predictions as well as meaningful ensemble predictions.
An integrated uncertainty and ensemble-based data assimilation approach for improved operational streamflow predictions
M. He,T. S. Hogue,S. A. Margulis,K. J. Franz
Hydrology and Earth System Sciences Discussions , 2011, DOI: 10.5194/hessd-8-7709-2011
Abstract: The current study proposes an integrated uncertainty and ensemble-based data assimilation framework (ICEA) and evaluates its viability in providing operational streamflow predictions via assimilating snow water equivalent (SWE) data. This step-wise framework applies a parameter uncertainty analysis algorithm (ISURF) to identify the uncertainty structure of sensitive model parameters, which is subsequently formulated into an Ensemble Kalman Filter (EnKF) to generate updated snow states for streamflow prediction. The framework is coupled to the US National Weather Service (NWS) snow and rainfall-runoff models. Its applicability is demonstrated for an operational basin of a western River Forecast Center (RFC) of the NWS. Performance of the framework is evaluated against existing operational baseline (RFC predictions), the stand-alone ISURF, and the stand-alone EnKF. Results indicate that the ensemble-mean prediction of ICEA considerably outperforms predictions from the other three scenarios investigated, particularly in the context of predicting high flows (top 5th percentile). The ICEA streamflow ensemble predictions capture the variability of the observed streamflow well, however the ensemble is not wide enough to consistently contain the range of streamflow observations in the study basin. Our findings indicate that the ICEA has the potential to supplement the current operational (deterministic) forecasting method in terms of providing improved single-valued (e.g., ensemble mean) streamflow predictions as well as meaningful ensemble predictions.
A data assimilation method of the Ensemble Kalman Filter for use in severe dust storm forecasts over China  [PDF]
C. Lin,Z. Wang,J. Zhu
Atmospheric Chemistry and Physics Discussions , 2007,
Abstract: An Ensemble Kalman Filter (EnKF) data assimilation system was developed for a regional dust transport model. This paper applied the EnKF method to investigate modeling severe dust storm episodes occurred in March 2002 over China based on surface observations of dust concentrations to explore its impacts on forecast improvement. A series of sensitivity experiments using our system reveals that the EnKF is an advanced assimilation method to afford better initial conditions with surface observed PM10 in North China and lead to improved forecasts of dust storms, but forecast with large errors can be made by model errors. This result illustrates that it requires identifying and correcting model errors during the assimilation procedure in order to significantly improve forecasts. Results also show that the EnKF should use a large inflation parameter to obtain better model performance and forecast potential. Furthermore, the ensemble perturbations generated at the initial time should include enough ensemble spreads to represent the background error after several assimilation cycles.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.