oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
A comparison of satellite scintillation measurements with HF radar backscatter characteristics
S. E. Milan, S. Basu, T. K. Yeoman,R. E. Sheehan
Annales Geophysicae (ANGEO) , 2005,
Abstract: We examine the correspondence between high latitude ionospheric scintillation measurements made at 250MHz with the occurrence of 10MHz HF coherent radar backscatter, on 13 and 14 December 2002. We demonstrate that when the ionospheric intersection point of the scintillation measurements is co-located with significant HF radar backscatter, the observed scintillation, quantified by the S4 index, is elevated. Conversely, when the radar indicates that backscatter is observed away from the intersection point due to movements of the auroral zone, the observed scintillation is low. This suggests that scintillation is highly location-dependent, being enhanced in the auroral zone and being lower at sub-auroral latitudes. The coexistence of scintillation and HF radar backscatter, produced by ionospheric density perturbations with scale sizes of 100s of metres and ~15 m, respectively, suggests that a broad spectrum of density fluctuations is found in the auroral zone.
Space weather challenges of the polar cap ionosphere  [cached]
Moen J?ran,Oksavik Kjellmar,Alfonsi Lucilla,Daabakk Yvonne
Journal of Space Weather and Space Climate , 2013, DOI: 10.1051/swsc/2013025
Abstract: This paper presents research on polar cap ionosphere space weather phenomena conducted during the European Cooperation in Science and Technology (COST) action ES0803 from 2008 to 2012. The main part of the work has been directed toward the study of plasma instabilities and scintillations in association with cusp flow channels and polar cap electron density structures/patches, which is considered as critical knowledge in order to develop forecast models for scintillations in the polar cap. We have approached this problem by multi-instrument techniques that comprise the EISCAT Svalbard Radar, SuperDARN radars, in-situ rocket, and GPS scintillation measurements. The Discussion section aims to unify the bits and pieces of highly specialized information from several papers into a generalized picture. The cusp ionosphere appears as a hot region in GPS scintillation climatology maps. Our results are consistent with the existing view that scintillations in the cusp and the polar cap ionosphere are mainly due to multi-scale structures generated by instability processes associated with the cross-polar transport of polar cap patches. We have demonstrated that the SuperDARN convection model can be used to track these patches backward and forward in time. Hence, once a patch has been detected in the cusp inflow region, SuperDARN can be used to forecast its destination in the future. However, the high-density gradient of polar cap patches is not the only prerequisite for high-latitude scintillations. Unprecedented high-resolution rocket measurements reveal that the cusp ionosphere is associated with filamentary precipitation giving rise to kilometer scale gradients onto which the gradient drift instability can operate very efficiently. Cusp ionosphere scintillations also occur during IMF BZ north conditions, which further substantiates that particle precipitation can play a key role to initialize plasma structuring. Furthermore, the cusp is associated with flow channels and strong flow shears, and we have demonstrated that the Kelvin-Helmholtz instability process may be efficiently driven by reversed flow events.
Effects of high-latitude atmospheric gravity wave disturbances on artificial HF radar backscatter
A. Senior, M. J. Kosch, T. K. Yeoman, M. T. Rietveld,I. W. McCrea
Annales Geophysicae (ANGEO) , 2006,
Abstract: Observations of HF radar backscatter from artificial field-aligned irregularities in an ionosphere perturbed by travelling disturbances due to atmospheric gravity waves are presented. Some features of the spatio-temporal structure of the artificial radar backscatter can be explained in terms of the distortion of the ionosphere resulting from the travelling disturbances. The distorted ionosphere can allow the HF pump wave to access upper-hybrid resonance at larger distances from the transmitter than are normally observed and can also prevent the pump wave reaching this resonance at close distances. The variation in altitude of the irregularities sometimes results in a significant variation in the elevation angle of arrival of the backscattered signal at the radar implying that the radar "sees" a target moving in altitude. We suggest that this may be evidence of off-orthogonal scattering from the irregularities.
Climatology of GPS ionospheric scintillations over high and mid-latitude European regions
L. Spogli, L. Alfonsi, G. De Franceschi, V. Romano, M. H. O. Aquino,A. Dodson
Annales Geophysicae (ANGEO) , 2009,
Abstract: We analyze data of ionospheric scintillation in the geographic latitudinal range 44°–88° N during the period of October, November and December 2003 as a first step to develop a "scintillation climatology" over Northern Europe. The behavior of the scintillation occurrence as a function of the magnetic local time and of the corrected magnetic latitude is investigated to characterize the external conditions leading to scintillation scenarios. The results shown herein, obtained merging observations from four GISTM (GPS Ionospheric Scintillation and TEC Monitor), highlight also the possibility to investigate the dynamics of irregularities causing scintillation by combining the information coming from a wide range of latitudes. Our findings associate the occurrences of the ionospheric irregularities with the expected position of the auroral oval and ionospheric troughs and show similarities with the distribution in magnetic local time of the polar cap patches. The results show also the effect of ionospheric disturbances on the phase and the amplitude of the GPS signals, evidencing the different contributions of the auroral and the cusp/cap ionosphere.
Effects of Abrupt Variations of Solar Wind Dynamic Pressure on the High-Latitude Ionosphere  [PDF]
Igino Coco,Ermanno Amata,Maria Federica Marcucci,Danila Ambrosino,Simon G. Shepherd
International Journal of Geophysics , 2011, DOI: 10.1155/2011/207514
Abstract: We show the results of a statistical study on the effects in the high-latitude ionosphere of abrupt variations of solar wind dynamic pressure, using Super Dual Auroral Radar Network (SuperDARN) data in both hemispheres. We find that, during periods of quiet ionospheric conditions, the amount of radar backscatter increases when a variation in the dynamic pressure occurs, both positive (increase of the pressure) and negative (decrease of the pressure). We also investigate the behaviour of the Cross-Polar Cap Potential (CPCP) during pressure variations and show preliminary results.
50 MHz continuous wave interferometer observations of the unstable mid-latitude E-region ionosphere  [PDF]
C. Haldoupis,A. Bourdillon,A. Kamburelis,G. C. Hussey
Annales Geophysicae (ANGEO) , 2003,
Abstract: In this paper we describe the conversion of SESCAT (Sporadic-E SCATter experiment), a bistatic 50 MHz continuous wave (CW) Doppler radar located on the island of Crete, Greece, to a single (east-west) baseline interferometer. The first results show that SESCAT, which provides high quality Doppler spectra and excellent temporal resolution, has its measurement capabilities enhanced significantly when operated as an interferometer, as it can also study short-term dynamics of localized scattering regions within mid-latitude sporadic E-layers. The interferometric observations reveal that the aspect sensitive area viewed by the radar often contains a few zonally located backscatter regions, presumably blobs or patches of unstable metallic ion plasma, which drift across the radar field-of-view with the neutral wind. On average, these active regions of backscatter have mean zonal scales ranging from a few kilometers to several tens of kilometers and drift with westward speeds from ~ 20 m/s to 100 m/s, and occasionally up to 150 m/s. The cross-spectral analysis shows that mid-latitude type 1 echoes occur much more frequently than has been previously assumed and they originate in single and rather localized areas of elevated electric fields. On the other hand, typical bursts of type 2 echoes are often found to result from two adjacent regions in azimuth undergoing the same bulk motion westwards but producing scatter of opposite Doppler polarity, a fact that contradicts the notion of isotropic turbulence to which type 2 echoes are attributed. Finally, quasi-periodic (QP) echoes are observed simply to be due to sequential unstable plasma patches or blobs which traverse across the radar field-of-view, sometimes in a wave-like fashion. Key words. Ionosphere (ionospheric irregularities; mid-latitude ionosphere; plasma waves and instabilities)
First simultaneous observations of flux transfer events at the high-latitude magnetopause by the Cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars  [PDF]
J. A. Wild,S. W. H. Cowley,J. A. Davies,H. Khan
Annales Geophysicae (ANGEO) , 2003,
Abstract: Cluster magnetic field data are studied during an outbound pass through the post-noon high-latitude magnetopause region on 14 February 2001. The onset of several minute perturbations in the magnetospheric field was observed in conjunction with a southward turn of the interplanetary magnetic field observed upstream by the ACE spacecraft and lagged to the subsolar magnetopause. These perturbations culminated in the observation of four clear magnetospheric flux transfer events (FTEs) adjacent to the magnetopause, together with a highly-structured magnetopause boundary layer containing related field features. Furthermore, clear FTEs were observed later in the magnetosheath. The magnetospheric FTEs were of essentially the same form as the original "flux erosion events" observed in HEOS-2 data at a similar location and under similar interplanetary conditions by Haerendel et al. (1978). We show that the nature of the magnetic perturbations in these events is consistent with the formation of open flux tubes connected to the northern polar ionosphere via pulsed reconnection in the dusk sector magnetopause. The magnetic footprint of the Cluster spacecraft during the boundary passage is shown to map centrally within the fields-of-view of the CUTLASS SuperDARN radars, and to pass across the field-aligned beam of the EISCAT Svalbard radar (ESR) system. It is shown that both the ionospheric flow and the backscatter power in the CUTLASS data pulse are in synchrony with the magnetospheric FTEs and boundary layer structures at the latitude of the Cluster footprint. These flow and power features are subsequently found to propagate poleward, forming classic "pulsed ionospheric flow" and "poleward-moving radar auroral form" structures at higher latitudes. The combined Cluster-CUTLASS observations thus represent a direct demonstration of the coupling of momentum and energy into the magnetosphere-ionosphere system via pulsed magnetopause reconnection. The ESR observations also reveal the nature of the structured and variable polar ionosphere produced by the structured and time-varying precipitation and flow. Key words. Ionosphere (auroral ionosphere) Magentospheric physics (magnetopause, cusp and boundary layers; magnetosphere-ionosphere interactions)
THE MEASUREMENT OF SCINTILLATION RADIO-WAVE SIGNAL IN IONOSPHERE
电离层闪烁电波信号的测量

Huang Qifan,
黄其凡

电子与信息学报 , 1988,
Abstract: Theoretical formula for determining the power spectrum of the scintillation radio-wave signal with interferometer is presented in this paper for study of ionosphere. The results of theoretical calculation agree will the measurements. The radio scintillation power spectrum index (p=3.5) which is caused by the irregularities in the ionosphere is determined from the results.
HF radar observations of high-aspect angle backscatter from the E-region
S. E. Milan, M. Lester, T. K. Yeoman, T. R. Robinson, M. V. Uspensky,J.-P. Villain
Annales Geophysicae (ANGEO) , 2004,
Abstract: We present evidence for the observation of high-aspect angle HF radar backscatter from the auroral electrojets, and describe the spectral characteristics of these echoes. Such backscatter is observed at very near ranges where ionospheric refraction is not sufficient to bring the sounding radio waves to orthogonality with the magnetic field; the frequency dependence of this propagation effect is investigated with the Stereo upgrade of the CUTLASS Iceland radar. We term the occurrence of such echoes the "high-aspect angle irregularity region" or HAIR. It is suggested that backscatter is observed at aspect angles as high as 30°, with an aspect sensitivity as low as 1dB deg–1. These echoes are distinguished from normal electrojet backscatter by having low Doppler shifts with an azimuthal dependence that appears more consistent with the direction of the convection electric field than with the expected electron drift direction. This is discussed in terms of the linear theory dispersion relation for electrojet waves. Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; auroral ionosphere)
Mid-latitude ionospheric scintillation anomaly in the Far East  [PDF]
L. A. Hajkowicz,H. Minakoshi
Annales Geophysicae (ANGEO) , 2003,
Abstract: A long-term (over 3 years) study has been undertaken to obtain a comprehensive evaluation of VHF ionospheric scintillation morphology in East Asia (at Kokobunji in Japan), using amplitude records from Transit satellites. It is now evident that summer day and night scintillation enhancement in this mid-latitude region is a long-term evidence of a well-known Asian ionospheric disturbance anomaly. The scintillation activity is particularly strong during summer nights (21:00–24:00 LT) and on occasion, all satellite passes recorded on consecutive days are associated with pronounced scintillation activity. A second sub-maximum is observed in the summer pre-noon period (09:00–12:00 LT). The scintillation regions extend latitudinally for a distance of 400–600 km in the F-region and 100–200 km in the E-region, mostly equatorwards of Kokobunji. For comparison similar scintillation data obtained for one year at the same longitudinal sector but in southern mid-latitudes (Brisbane in Australia) were compared with the simultaneous northern scintillation data. The scintillation activity at Brisbane was much less pronounced in the southern summer but was of the same low level during other seasons as that for Kokobunji. This consistent scintillation anomaly, as yet, has not been included in the global scintillation models, which are essential for radio-satellite communications. Key words. Ionosphere (mid-latitude ionosphere; ionospheric irregularities)
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.