oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
tRNAs as regulators in gene expression
Yan Li,Hui Zhou
Science China Life Sciences , 2009, DOI: 10.1007/s11427-009-0039-y
Abstract: Transfer RNAs (tRNAs) hold a central place in protein synthesis by interpreting the genetic information stored in DNA into the amino acid sequence of protein, thus functioning as “adaptor” molecules. In recent years, however, various studies have shown that tRNAs have additional functions beyond participating in protein synthesis. When suffering from certain nutritional stresses, tRNAs change the level of aminoacylation to became uncharged, and these uncharged tRNAs act as effector molecules to regulate global gene expression, so that the stressed organism copes with the adverse environmental stresses. In budding yeast and certain mammalian cells, the retrograde movement of mature tRNAs from cytoplasm to nucleus serves as a mechanism for the surveillance system within the nucleus to continue monitoring the integrity of tRNAs. On the other hand, this retrograde action effectively reduces the global protein synthesis level under conditions of nutritional starvation. Quite recently, various publications have shown that tRNAs are not stable molecules in an absolute sense. Under certain physiological or environmental stresses, they are specifically cleaved into fragments of different lengths in the anticodon loop or anticodon left arm. These cleavages are not a meaningless random degradation phenomenon. Instead, a novel class of signal molecules such as tRNA halves or sitRNAs may be produced, which are closely correlated with the modulation of global gene expression. Investigation of the regulatory functions of tRNAs is a frontier, which seeks to reveal the structural and functional diversity of tRNAs as well as their vital functions during the expression of genetic information.
Gene Expression Changes in the Septum: Possible Implications for MicroRNAs in Sculpting the Maternal Brain  [PDF]
Changjiu Zhao, Michael C. Saul, Terri Driessen, Stephen C. Gammie
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0038602
Abstract: The transition from the non-maternal to the maternal state is characterized by a variety of CNS alterations that support the care of offspring. The septum (including lateral and medial portions) is a brain region previously linked to various emotional and motivational processes, including maternal care. In this study, we used microarrays (PLIER algorithm) to examine gene expression changes in the septum of postpartum mice and employed gene set enrichment analysis (GSEA) to identify possible regulators of altered gene expression. Genes of interest identified as differentially regulated with microarray analysis were validated with quantitative real-time PCR. We found that fatty acid binding protein 7 (Fabp7) and galanin (Gal) were downregulated, whereas insulin-like growth factor binding protein 3 (Igfbp3) was upregulated in postpartum mice compared to virgin females. These genes were previously found to be differentially regulated in other brain regions during lactation. We also identified altered expression of novel genes not previously linked to maternal behavior, but that could play a role in postpartum processes, including glutamate-ammonia ligase (Glul) and somatostatin receptor 1 (Sstr1) (both upregulated in postpartum). Genes implicated in metabolism, cell differentiation, or proliferation also exhibited altered expression. Unexpectedly, enrichment analysis revealed a high number of microRNAs, transcription factors, or conserved binding sites (177 with corrected P-value <0.05) that were significantly linked to maternal upregulated genes, while none were linked to downregulated genes. MicroRNAs have been linked to placenta and mammary gland development, but this is the first indication they may also play a key role in sculpting the maternal brain. Together, this study provides new insights into genes (along with possible mechanisms for their regulation) that are involved in septum-mediated adaptations during the postpartum period.
tRNAs as regulators in gene expression

Yan Li,Hui Zhou,

中国科学C辑(英文版) , 2009,
Abstract: Transfer RNAs (tRNAs) hold a central place in protein synthesis by interpreting the genetic information stored in DNA into the amino acid sequence of protein, thus functioning as “adaptor” molecules. In recent years, however, various studies have shown that tRNAs have additional functions beyond participating in protein synthesis. When suffering from certain nutritional stresses, tRNAs change the level of aminoacylation to became uncharged, and these uncharged tRNAs act as effector molecules to regulate global gene expression, so that the stressed organism copes with the adverse environmental stresses. In budding yeast and certain mammalian cells, the retrograde movement of mature tRNAs from cytoplasm to nucleus serves as a mechanism for the surveillance system within the nucleus to continue monitoring the integrity of tRNAs. On the other hand, this retrograde action effectively reduces the global protein synthesis level under conditions of nutritional starvation. Quite recently, various publications have shown that tRNAs are not stable molecules in an absolute sense. Under certain physiological or environmental stresses, they are specifically cleaved into fragments of different lengths in the anticodon loop or anticodon left arm. These cleavages are not a meaningless random degradation phenomenon. Instead, a novel class of signal molecules such as tRNA halves or sitRNAs may be produced, which are closely correlated with the modulation of global gene expression. Investigation of the regulatory functions of tRNAs is a frontier, which seeks to reveal the structural and functional diversity of tRNAs as well as their vital functions during the expression of genetic information. Supported by National Natural Science Foundation of China (Grant Nos. 30870530 and 30570398) and the National Key Basic Research Program of China (Grant No. 2005CB724600)
Amino acids as regulators of gene expression
Scot R Kimball, Leonard S Jefferson
Nutrition & Metabolism , 2004, DOI: 10.1186/1743-7075-1-3
Abstract: Recent advances in biomedical research reveal a key role for amino acids as nutritional signals in the regulation of a number of cellular processes. Studies employing a variety of cell types and different tissues demonstrate that one such process affected is the regulation of gene expression through modulation of the translation of messenger RNA (mRNA). The studies show that cells recognize changes in amino acid availability and generate alterations in signal transduction pathways that are also regulated by hormones and growth factors. The cells then respond to the integrated signaling input by either upregulating or downregulating translation initiation, i.e., the process during which initiator methionyl-tRNA (met-tRNAi) and mRNA bind to a 40S ribosomal subunit followed by the joining of a 60S ribosomal subunit to form a translationally competent 80S ribosome. The response of translation initiation to a change in amino acid and/or hormone availability can be general, i.e., affecting the translation of most if not all mRNAs, and/or specific, i.e., affecting the translation of a single class or subset of mRNAs. Both the general and specific responses can be mediated through regulation of either the met-tRNAi and/or mRNA binding steps. The specific response may also involve an additional regulatory site, i.e., the phosphorylation status of ribosomal protein rpS6, one of the proteins composing the 40S ribosomal subunit. Learning how the cell recognizes a sufficiency of amino acids is presently the objective of intense research. Present evidence, however, suggests multiple recognition sites and multiple signaling pathways. Below, we summarize our current knowledge of the signaling pathways known to respond to changes in amino acid availability. In addition, the translation initiation factors and mRNA structural elements that are involved in changes in both global and specific modulation of mRNA translation are discussed.The first step in translation initiation involves
MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression  [PDF]
Steven W. Paugh?,David R. Coss?,Ju Bao?,Lucas T. Laudermilk?,Christy R. Grace?,Antonio M. Ferreira?,M. Brett Waddell?,Granger Ridout?,Deanna Naeve?,Michael Leuze
PLOS Computational Biology , 2016, DOI: 10.1371/journal.pcbi.1004744
Abstract: MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10?16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription.
Sex-biased expression of microRNAs in Drosophila melanogaster  [PDF]
Antonio Marco
Quantitative Biology , 2013, DOI: 10.1098/rsob.140024
Abstract: Most animals have separate sexes. The differential expression of gene products, in particular that of gene regulators, is underlying sexual dimorphism. Analyses of sex-biased expression have focused mostly in protein coding genes. Several lines of evidence indicate that microRNAs, a class of major gene regulators, are likely to have a significant role in sexual dimorphism. This role has not been systematically explored so far. Here I study the sex-biased expression pattern of microRNAs in the model species Drosophila melanogaster. As with protein coding genes, sex biased microRNAs are associated with the reproductive function. Strikingly, contrary to protein-coding genes, male biased microRNAs are enriched in the X chromosome whilst female microRNAs are mostly autosomal. I propose that the chromosomal distribution is a consequence of high rates of de novo emergence, and a preference of new microRNAs to be expressed in the testis. I also suggest that demasculinization of the X chromosome may not affect microRNAs. Interestingly, female biased microRNAs are often encoded within protein coding genes that are also expressed in females. MicroRNAs with sex-biased expression do not preferentially target sex-biased gene transcripts. These results strongly suggest that the sex-biased expression of microRNAs is mainly a consequence of high rates of microRNA emergence in the X (male bias) or hitch-hiked expression by host genes (female bias).
Microbiota Modulate Host Gene Expression via MicroRNAs  [PDF]
Guillaume Dalmasso,Hang Thi Thu Nguyen,Yutao Yan,Hamed Laroui,Moiz A. Charania,Saravanan Ayyadurai,Shanthi V. Sitaraman,Didier Merlin
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0019293
Abstract: Microbiota are known to modulate host gene expression, yet the underlying molecular mechanisms remain elusive. MicroRNAs (miRNAs) are importantly implicated in many cellular functions by post-transcriptionally regulating gene expression via binding to the 3′-untranslated regions (3′-UTRs) of the target mRNAs. However, a role for miRNAs in microbiota-host interactions remains unknown. Here we investigated if miRNAs are involved in microbiota-mediated regulation of host gene expression. Germ-free mice were colonized with the microbiota from pathogen-free mice. Comparative profiling of miRNA expression using miRNA arrays revealed one and eight miRNAs that were differently expressed in the ileum and the colon, respectively, of colonized mice relative to germ-free mice. A computational approach was then employed to predict genes that were potentially targeted by the dysregulated miRNAs during colonization. Overlapping the miRNA potential targets with the microbiota-induced dysregulated genes detected by a DNA microarray performed in parallel revealed several host genes that were regulated by miRNAs in response to colonization. Among them, Abcc3 was identified as a highly potential miRNA target during colonization. Using the murine macrophage RAW 264.7 cell line, we demonstrated that mmu-miR-665, which was dysregulated during colonization, down-regulated Abcc3 expression by directly targeting the Abcc3 3′-UTR. In conclusion, our study demonstrates that microbiota modulate host microRNA expression, which could in turn regulate host gene expression.
MicroRNAs: Novel Regulators Involved in the Pathogenesis of Psoriasis?  [PDF]
Enik? Sonkoly, Tianling Wei, Peter C.J. Janson, Annika S??f, Lena Lundeberg, Maria Tengvall-Linder, Gunnar Norstedt, Harri Alenius, Bernhard Homey, Annika Scheynius, Mona St?hle, Andor Pivarcsi
PLOS ONE , 2007, DOI: 10.1371/journal.pone.0000610
Abstract: MicroRNAs are a recently discovered class of posttranscriptional regulators of gene expression with critical functions in health and disease. Psoriasis is the most prevalent chronic inflammatory skin disease in adults, with a substantial negative impact on the patients' quality of life. Here we show for the first time that psoriasis-affected skin has a specific microRNA expression profile when compared with healthy human skin or with another chronic inflammatory skin disease, atopic eczema. Among the psoriasis-specific microRNAs, we identified leukocyte-derived microRNAs and one keratinocyte-derived microRNA, miR-203. In a panel of 21 different human organs and tissues, miR-203 showed a highly skin-specific expression profile. Among the cellular constituents of the skin, it was exclusively expressed by keratinocytes. The up-regulation of miR-203 in psoriatic plaques was concurrent with the down-regulation of an evolutionary conserved target of miR-203, suppressor of cytokine signaling 3 (SOCS-3), which is involved in inflammatory responses and keratinocyte functions. Our results suggest that microRNA deregulation is involved in the pathogenesis of psoriasis and contributes to the dysfunction of the cross talk between resident and infiltrating cells. Taken together, a new layer of regulatory mechanisms is involved in the pathogenesis of chronic inflammatory skin diseases.
Origins of Binary Gene Expression in Post-transcriptional Regulation by MicroRNAs  [PDF]
Indrani Bose,Sayantari Ghosh
Quantitative Biology , 2012,
Abstract: MicroRNA-mediated regulation of gene expression is characterised by some distinctive features that set it apart from unregulated and transcription factor-regulated gene expression. Recently, a mathematical model has been proposed to describe the dynamics of post-transcriptional regulation by microRNAs. The model explains the observations made in single cell experiments quite well. In this paper, we introduce some additional features into the model and consider two specific cases. In the first case, a non-cooperative positive feedback loop is included in the transcriptional regulation of the target gene expression. In the second case, a stochastic version of the original model is considered in which there are random transitions between the inactive and active expression states of the gene. In the first case we show that bistability is possible in a parameter regime, due to the presence of a non-linear protein decay term in the gene expression dynamics. In the second case, we derive the conditions for obtaining stochastic binary gene expression. We find that this type of gene expression is more favourable in the case of regulation by microRNAs as compared to the case of unregulated gene expression. The theoretical predictions relating to binary gene expression are experimentally testable.
A Densely Interconnected Genome-Wide Network of MicroRNAs and Oncogenic Pathways Revealed Using Gene Expression Signatures  [PDF]
Chia Huey Ooi,Hue Kian Oh,Hannah Zhu'Ai Wang,Angie Lay Keng Tan,Jeanie Wu,Minghui Lee,Sun Young Rha,Hyun Cheol Chung,David Marc Virshup,Patrick Tan
PLOS Genetics , 2011, DOI: 10.1371/journal.pgen.1002415
Abstract: MicroRNAs (miRNAs) are important components of cellular signaling pathways, acting either as pathway regulators or pathway targets. Currently, only a limited number of miRNAs have been functionally linked to specific signaling pathways. Here, we explored if gene expression signatures could be used to represent miRNA activities and integrated with genomic signatures of oncogenic pathway activity to identify connections between miRNAs and oncogenic pathways on a high-throughput, genome-wide scale. Mapping >300 gene expression signatures to >700 primary tumor profiles, we constructed a genome-wide miRNA–pathway network predicting the associations of 276 human miRNAs to 26 oncogenic pathways. The miRNA–pathway network confirmed a host of previously reported miRNA/pathway associations and uncovered several novel associations that were subsequently experimentally validated. Globally, the miRNA–pathway network demonstrates a small-world, but not scale-free, organization characterized by multiple distinct, tightly knit modules each exhibiting a high density of connections. However, unlike genetic or metabolic networks typified by only a few highly connected nodes (“hubs”), most nodes in the miRNA–pathway network are highly connected. Sequence-based computational analysis confirmed that highly-interconnected miRNAs are likely to be regulated by common pathways to target similar sets of downstream genes, suggesting a pervasive and high level of functional redundancy among coexpressed miRNAs. We conclude that gene expression signatures can be used as surrogates of miRNA activity. Our strategy facilitates the task of discovering novel miRNA–pathway connections, since gene expression data for multiple normal and disease conditions are abundantly available.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.