Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Validation of Bacterial Replication Termination Models Using Simulation of Genomic Mutations  [PDF]
Nobuaki Kono, Kazuharu Arakawa, Masaru Tomita
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0034526
Abstract: In bacterial circular chromosomes and most plasmids, the replication is known to be terminated when either of the following occurs: the forks progressing in opposite directions meet at the distal end of the chromosome or the replication forks become trapped by Tus proteins bound to Ter sites. Most bacterial genomes have various polarities in their genomic structures. The most notable feature is polar genomic compositional asymmetry of the bases G and C in the leading and lagging strands, called GC skew. This asymmetry is caused by replication-associated mutation bias, and this “footprint" of the replication machinery suggests that, in contrast to the two known mechanisms, replication termination occurs near the chromosome dimer resolution site dif. To understand this difference between the known replication machinery and genomic compositional bias, we undertook a simulation study of genomic mutations, and we report here how different replication termination models contribute to the generation of replication-related genomic compositional asymmetry. Contrary to naive expectations, our results show that a single finite termination site at dif or at the GC skew shift point is not sufficient to reconstruct the genomic compositional bias as observed in published sequences. The results also show that the known replication mechanisms are sufficient to explain the position of the GC skew shift point.
DNA Lesions Induced by Replication Stress Trigger Mitotic Aberration and Tetraploidy Development  [PDF]
Yosuke Ichijima,Ken-ichi Yoshioka,Yoshiko Yoshioka,Keitaro Shinohe,Hiroaki Fujimori,Junya Unno,Masatoshi Takagi,Hidemasa Goto,Masaki Inagaki,Shuki Mizutani,Hirobumi Teraoka
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0008821
Abstract: During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.
Fragile Site Instability in Saccharomyces cerevisiae Causes Loss of Heterozygosity by Mitotic Crossovers and Break-Induced Replication  [PDF]
Danielle M. Rosen equal contributor,Ellen M. Younkin equal contributor,Shaylynn D. Miller,Anne M. Casper
PLOS Genetics , 2013, DOI: 10.1371/journal.pgen.1003817
Abstract: Loss of heterozygosity (LOH) at tumor suppressor loci is a major contributor to cancer initiation and progression. Both deletions and mitotic recombination can lead to LOH. Certain chromosomal loci known as common fragile sites are susceptible to DNA lesions under replication stress, and replication stress is prevalent in early stage tumor cells. There is extensive evidence for deletions stimulated by common fragile sites in tumors, but the role of fragile sites in stimulating mitotic recombination that causes LOH is unknown. Here, we have used the yeast model system to study the relationship between fragile site instability and mitotic recombination that results in LOH. A naturally occurring fragile site, FS2, exists on the right arm of yeast chromosome III, and we have analyzed LOH on this chromosome. We report that the frequency of spontaneous mitotic BIR events resulting in LOH on the right arm of yeast chromosome III is higher than expected, and that replication stress by low levels of polymerase alpha increases mitotic recombination 12-fold. Using single-nucleotide polymorphisms between the two chromosome III homologs, we mapped the locations of recombination events and determined that FS2 is a strong hotspot for both mitotic reciprocal crossovers and break-induced replication events under conditions of replication stress.
Top2 and Sgs1-Top3 Act Redundantly to Ensure rDNA Replication Termination  [PDF]
Kamilla Mundbjerg?,Signe W. J?rgensen?,Jacob Freds?e?,Ida Nielsen?,Jakob Madsen Pedersen?,Iben Bach Bentsen?,Michael Lisby?,Lotte Bjergbaek?,Anni H Andersen
PLOS Genetics , 2015, DOI: 10.1371/journal.pgen.1005697
Abstract: Faithful DNA replication with correct termination is essential for genome stability and transmission of genetic information. Here we have investigated the potential roles of Topoisomerase II (Top2) and the RecQ helicase Sgs1 during late stages of replication. We find that cells lacking Top2 and Sgs1 (or Top3) display two different characteristics during late S/G2 phase, checkpoint activation and accumulation of asymmetric X-structures, which are both independent of homologous recombination. Our data demonstrate that checkpoint activation is caused by a DNA structure formed at the strongest rDNA replication fork barrier (RFB) during replication termination, and consistently, checkpoint activation is dependent on the RFB binding protein, Fob1. In contrast, asymmetric X-structures are formed independent of Fob1 at less strong rDNA replication fork barriers. However, both checkpoint activation and formation of asymmetric X-structures are sensitive to conditions, which facilitate fork merging and progression of replication forks through replication fork barriers. Our data are consistent with a redundant role of Top2 and Sgs1 together with Top3 (Sgs1-Top3) in replication fork merging at rDNA barriers. At RFB either Top2 or Sgs1-Top3 is essential to prevent formation of a checkpoint activating DNA structure during termination, but at less strong rDNA barriers absence of the enzymes merely delays replication fork merging, causing an accumulation of asymmetric termination structures, which are solved over time.
Interference in DNA Replication Can Cause Mitotic Chromosomal Breakage Unassociated with Double-Strand Breaks  [PDF]
Mari Fujita, Hiroyuki Sasanuma, Kimiyo N. Yamamoto, Hiroshi Harada, Aya Kurosawa, Noritaka Adachi, Masato Omura, Masahiro Hiraoka, Shunichi Takeda, Kouji Hirota
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0060043
Abstract: Morphological analysis of mitotic chromosomes is used to detect mutagenic chemical compounds and to estimate the dose of ionizing radiation to be administered. It has long been believed that chromosomal breaks are always associated with double-strand breaks (DSBs). We here provide compelling evidence against this canonical theory. We employed a genetic approach using two cell lines, chicken DT40 and human Nalm-6. We measured the number of chromosomal breaks induced by three replication-blocking agents (aphidicolin, 5-fluorouracil, and hydroxyurea) in DSB-repair-proficient wild-type cells and cells deficient in both homologous recombination and nonhomologous end-joining (the two major DSB-repair pathways). Exposure of cells to the three replication-blocking agents for at least two cell cycles resulted in comparable numbers of chromosomal breaks for RAD54?/?/KU70?/? DT40 clones and wild-type cells. Likewise, the numbers of chromosomal breaks induced in RAD54?/?/LIG4?/? Nalm-6 clones and wild-type cells were also comparable. These data indicate that the replication-blocking agents can cause chromosomal breaks unassociated with DSBs. In contrast with DSB-repair-deficient cells, chicken DT40 cells deficient in PIF1 or ATRIP, which molecules contribute to the completion of DNA replication, displayed higher numbers of mitotic chromosomal breaks induced by aphidicolin than did wild-type cells, suggesting that single-strand gaps left unreplicated may result in mitotic chromosomal breaks.
Cleavage Factor I Links Transcription Termination to DNA Damage Response and Genome Integrity Maintenance in Saccharomyces cerevisiae  [PDF]
Hélène Gaillard,Andrés Aguilera
PLOS Genetics , 2014, DOI: doi/10.1371/journal.pgen.1004203
Abstract: During transcription, the nascent pre-mRNA undergoes a series of processing steps before being exported to the cytoplasm. The 3′-end processing machinery involves different proteins, this function being crucial to cell growth and viability in eukaryotes. Here, we found that the rna14-1, rna15-1, and hrp1-5 alleles of the cleavage factor I (CFI) cause sensitivity to UV-light in the absence of global genome repair in Saccharomyces cerevisiae. Unexpectedly, CFI mutants were proficient in UV-lesion repair in a transcribed gene. DNA damage checkpoint activation and RNA polymerase II (RNAPII) degradation in response to UV were delayed in CFI-deficient cells, indicating that CFI participates in the DNA damage response (DDR). This is further sustained by the synthetic growth defects observed between rna14-1 and mutants of different repair pathways. Additionally, we found that rna14-1 suffers severe replication progression defects and that a functional G1/S checkpoint becomes essential in avoiding genetic instability in those cells. Thus, CFI function is required to maintain genome integrity and to prevent replication hindrance. These findings reveal a new function for CFI in the DDR and underscore the importance of coordinating transcription termination with replication in the maintenance of genomic stability.
Redundant Mechanisms Prevent Mitotic Entry Following Replication Arrest in the Absence of Cdc25 Hyper-Phosphorylation in Fission Yeast  [PDF]
Corey Frazer, Paul G. Young
PLOS ONE , 2011, DOI: 10.1371/journal.pone.0021348
Abstract: Following replication arrest the Cdc25 phosphatase is phosphorylated and inhibited by Cds1. It has previously been reported that expressing Cdc25 where 9 putative amino-terminal Cds1 phosphorylation sites have been substituted to alanine results in bypass of the DNA replication checkpoint. However, these results were acquired by expression of the phosphorylation mutant using a multicopy expression vector in a genetic background where the DNA replication checkpoint is intact. In order to clarify these results we constructed a Cdc25(9A)-GFP native promoter integrant and examined its effect on the replication checkpoint at endogenous expression levels. In this strain the replication checkpoint operates normally, conditional on the presence of the Mik1 kinase. In response to replication arrest the Cdc25(9A)-GFP protein is degraded, suggesting the presence of a backup mechanism to eliminate the phosphatase when it cannot be inhibited through phosphorylation.
Mammalian TIMELESS Is Involved in Period Determination and DNA Damage-Dependent Phase Advancing of the Circadian Clock  [PDF]
Erik Engelen, Roel C. Janssens, Kazuhiro Yagita, Veronique A. J. Smits, Gijsbertus T. J. van der Horst, Filippo Tamanini
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0056623
Abstract: The transcription/translation feedback loop-based molecular oscillator underlying the generation of circadian gene expression is preserved in almost all organisms. Interestingly, the animal circadian clock proteins CRYPTOCHROME (CRY), PERIOD (PER) and TIMELESS (TIM) are strongly conserved at the amino acid level through evolution. Within this evolutionary frame, TIM represents a fascinating puzzle. While Drosophila contains two paralogs, dTIM and dTIM2, acting in clock/photoreception and chromosome integrity/photoreception respectively, mammals contain only one TIM homolog. Whereas TIM has been shown to regulate replication termination and cell cycle progression, its functional link to the circadian clock is under debate. Here we show that RNAi-mediated knockdown of TIM in NIH3T3 and U2OS cells shortens the period by 1 hour and diminishes DNA damage-dependent phase advancing. Furthermore, we reveal that the N-terminus of TIM is sufficient for interaction with CRY1 and CHK1 as well for homodimerization, and the C-terminus is necessary for nuclear localization. Interestingly, the long TIM isoform (l-TIM), but not the short (s-TIM), interacts with CRY1 and both proteins can reciprocally regulate their nuclear translocation in transiently transfected COS7 cells. Finally, we demonstrate that co-expression of PER2 abolishes the formation of the TIM/CRY1 complex through affinity binding competition to the C-terminal tail of CRY1. Notably, the presence of the latter protein region evolutionarily and structurally distinguishes mammalian from insect CRYs. We propose that the dynamic interaction between these three proteins could represent a post-translational aspect of the mammalian circadian clock that is important for its pace and adaption to external stimuli, such as DNA damage and/or light.
Cdc7p-Dbf4p Regulates Mitotic Exit by Inhibiting Polo Kinase  [PDF]
Charles T. Miller,Carrie Gabrielse,Ying-Chou Chen,Michael Weinreich
PLOS Genetics , 2009, DOI: 10.1371/journal.pgen.1000498
Abstract: Cdc7p-Dbf4p is a conserved protein kinase required for the initiation of DNA replication. The Dbf4p regulatory subunit binds Cdc7p and is essential for Cdc7p kinase activation, however, the N-terminal third of Dbf4p is dispensable for its essential replication activities. Here, we define a short N-terminal Dbf4p region that targets Cdc7p-Dbf4p kinase to Cdc5p, the single Polo kinase in budding yeast that regulates mitotic progression and cytokinesis. Dbf4p mediates an interaction with the Polo substrate-binding domain to inhibit its essential role during mitosis. Although Dbf4p does not inhibit Polo kinase activity, it nonetheless inhibits Polo-mediated activation of the mitotic exit network (MEN), presumably by altering Polo substrate targeting. In addition, although dbf4 mutants defective for interaction with Polo transit S-phase normally, they aberrantly segregate chromosomes following nuclear misorientation. Therefore, Cdc7p-Dbf4p prevents inappropriate exit from mitosis by inhibiting Polo kinase and functions in the spindle position checkpoint.
An Unexpected Role for the Clock Protein Timeless in Developmental Apoptosis  [PDF]
Linda P. O'Reilly,Simon C. Watkins,Thomas E. Smithgall
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0017157
Abstract: Programmed cell death is critical not only in adult tissue homeostasis but for embryogenesis as well. One of the earliest steps in development, formation of the proamniotic cavity, involves coordinated apoptosis of embryonic cells. Recent work from our group demonstrated that c-Src protein-tyrosine kinase activity triggers differentiation of mouse embryonic stem (mES) cells to primitive ectoderm-like cells. In this report, we identified Timeless (Tim), the mammalian ortholog of a Drosophila circadian rhythm protein, as a binding partner and substrate for c-Src and probed its role in the differentiation of mES cells.
Page 1 /100
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.