Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Higher Order Spike Synchrony in Prefrontal Cortex during Visual Memory  [PDF]
Gordon Pipa,Matthias H. J. Munk
Frontiers in Computational Neuroscience , 2011, DOI: 10.3389/fncom.2011.00023
Abstract: Precise temporal synchrony of spike firing has been postulated as an important neuronal mechanism for signal integration and the induction of plasticity in neocortex. As prefrontal cortex plays an important role in organizing memory and executive functions, the convergence of multiple visual pathways onto PFC predicts that neurons should preferentially synchronize their spiking when stimulus information is processed. Furthermore, synchronous spike firing should intensify if memory processes require the induction of neuronal plasticity, even if this is only for short-term. Here we show with multiple simultaneously recorded units in ventral prefrontal cortex that neurons participate in 3 ms precise synchronous discharges distributed across multiple sites separated by at least 500 μm. The frequency of synchronous firing is modulated by behavioral performance and is specific for the memorized visual stimuli. In particular, during the memory period in which activity is not stimulus driven, larger groups of up to seven sites exhibit performance dependent modulation of their spike synchronization.
Visual Working Memory in Human Cortex  [PDF]
Brian Barton, Alyssa A. Brewer
Psychology (PSYCH) , 2013, DOI: 10.4236/psych.2013.48093

Visual working memory (VWM) is the ability to maintain visual information in a readily available and easily updated state. Converging evidence has revealed that VWM capacity is limited by the number of maintained objects, which is about 3 - 4 for the average human. Recent work suggests that VWM capacity is also limited by the resolution required to maintain objects, which is tied to the objects’ inherent complexity. Electroencephalogram (EEG) studies using the Contralateral Delay Activity (CDA) paradigm have revealed that cortical representations of VWM are at a minimum loosely organized like the primary visual system, such that the left side of space is represented in the right hemisphere, and vice versa. Recent functional magnetic resonance imaging (fMRI) work shows that the number of objects is maintained by representations in the inferior intraparietal sulcus (IPS) along dorsal parietal cortex, whereas the resolution of these maintained objects is subserved by the superior IPS and the lateral occipital complex (LOC). These areas overlap with recently-discovered, retinotopically-organized visual field maps (VFMs) spanning the IPS (IPS-0/1/2/3/4/5), and potentially maps in lateral occipital cortex, such as LO-1/2, and/or TO-1/2 (hMT+). Other fMRI studies have implicated early VFMs in posterior occipital cortex, suggesting that visual areas V1-hV4 are recruited to represent information in VWM. Insight into whether and how these VFMs subserve VWM may illuminate the nature of VWM. In addition, understanding the nature of these maps may allow a greater investigation into individual differences among subjects and even between hemispheres within subjects.

Visual cortex combines a stimulus and an error-like signal with a proportion that is dependent on time, space, and stimulus contrast  [PDF]
David Eriksson,Thomas Wunderle,Kerstin Schmidt
Frontiers in Systems Neuroscience , 2012, DOI: 10.3389/fnsys.2012.00026
Abstract: Even though the visual cortex is one of the most studied brain areas, the neuronal code in this area is still not fully understood. In the literature, two codes are commonly hypothesized, namely stimulus and predictive (error) codes. Here, we examined whether and how these two codes can coexist in a neuron. To this end, we assumed that neurons could predict a constant stimulus across time or space, since this is the most fundamental type of prediction. Prediction was examined in time using electrophysiology and voltage-sensitive dye imaging in the supragranular layers in area 18 of the anesthetized cat, and in space using a computer model. The distinction into stimulus and error code was made by means of the orientation tuning of the recorded unit. The stimulus was constructed as such that a maximum response to the non-preferred orientation indicated an error signal, and the maximum response to the preferred orientation indicated a stimulus signal. We demonstrate that a single neuron combines stimulus and error-like coding. In addition, we observed that the duration of the error coding varies as a function of stimulus contrast. For low contrast the error-like coding was prolonged by around 60–100%. Finally, the combination of stimulus and error leads to a suboptimal free energy in a recent predictive coding model. We therefore suggest a straightforward modification that can be applied to the free energy model and other predictive coding models. Combining stimulus and error might be advantageous because the stimulus code enables a direct stimulus recognition that is free of assumptions whereas the error code enables an experience dependent inference of ambiguous and non-salient stimuli.
How the Visual Cortex Handles Stimulus Noise: Insights from Amblyopia  [PDF]
éva M. Bankó, Judit K?rtvélyes, Béla Weiss, Zoltán Vidnyánszky
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0066583
Abstract: Adding noise to a visual image makes object recognition more effortful and has a widespread effect on human electrophysiological responses. However, visual cortical processes directly involved in handling the stimulus noise have yet to be identified and dissociated from the modulation of the neural responses due to the deteriorated structural information and increased stimulus uncertainty in the case of noisy images. Here we show that the impairment of face gender categorization performance in the case of noisy images in amblyopic patients correlates with amblyopic deficits measured in the noise-induced modulation of the P1/P2 components of single-trial event-related potentials (ERP). On the other hand, the N170 ERP component is similarly affected by the presence of noise in the two eyes and its modulation does not predict the behavioral deficit. These results have revealed that the efficient processing of noisy images depends on the engagement of additional processing resources both at the early, feature-specific as well as later, object-level stages of visual cortical processing reflected in the P1 and P2 ERP components, respectively. Our findings also suggest that noise-induced modulation of the N170 component might reflect diminished face-selective neuronal responses to face images with deteriorated structural information.
The Right Frontopolar Cortex Is Involved in Visual-Spatial Prospective Memory  [PDF]
Alberto Costa, Massimiliano Oliveri, Francesco Barban, Sonia Bonnì, Giacomo Koch, Carlo Caltagirone, Giovanni A. Carlesimo
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0056039
Abstract: The involvement of frontopolar cortex in mediating prospective memory processes has been evidenced by various studies, mainly by means of neuroimaging techniques. Recently, one transcranial magnetic stimulation study documented that transient inhibition of left Brodmann Area (BA) 10 impaired verbal prospective memory. This result raises the issue of whether the BA 10 involvement in prospective memory functioning may be modulated by the physical characteristics of the stimuli used. The present study aimed to investigate the role of the frontopolar cortex in visual-spatial PM by means of the application of inhibitory theta-burst stimulation. Twelve volunteers were evaluated after inhibitory theta-burst stimulation over left BA 10, right BA10 and CZ (control condition). In the prospective memory procedure, sequences of four spatial positions (black squares) each were presented. During the inter-sequence delay, subjects had to reproduce the sequence in the observed order (ongoing task forward) or the reverse order (backward). At the occurrence of a target position, subjects had to press a key on the keyboard (prospective memory score). Recall and recognition of the target positions were also tested. We found that prospective memory accuracy was lower after theta-burst stimulation over right BA10 than CZ (p<0.01), whereas it was comparable in left BA10 and CZ conditions. No significant difference was found among the three conditions on recall and recognition of target positions and on ongoing task performance. Our findings provide a novel strong evidence for a specific involvement of right frontopolar cortex in visual-spatial prospective memory. In the context of previous data providing evidence for left BA 10 involvement in verbal prospective memory, our results also suggest material-specific lateralization of prospective memory processes in BA 10.
Increased Amygdala and Visual Cortex Activity and Functional Connectivity towards Stimulus Novelty Is Associated with State Anxiety  [PDF]
Olga T. Ousdal, Ole A. Andreassen, Andres Server, Jimmy Jensen
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0096146
Abstract: Novel stimuli often require a rapid reallocation of sensory processing resources to determine the significance of the event, and the appropriate behavioral response. Both the amygdala and the visual cortex are central elements of the neural circuitry responding to novelty, demonstrating increased activity to new as compared to highly familiarized stimuli. Further, these brain areas are intimately connected, and thus the amygdala may be a key region for directing sensory processing resources to novel events. Although knowledge regarding the neurocircuit of novelty detection is gradually increasing, we still lack a basic understanding of the conditions that are necessary and sufficient for novelty-specific responses in human amygdala and the visual cortices, and if these brain areas interact during detection of novelty. In the present study, we investigated the response of amygdala and the visual cortex to novelty, by comparing functional MRI activity between 1st and 2nd time presentation of a series of emotional faces in an event-related task. We observed a significant decrease in amygdala and visual cortex activity already after a single stimulus exposure. Interestingly, this decrease in responsiveness was less for subjects with a high score on state anxiety. Further, novel faces stimuli were associated with a relative increase in the functional coupling between the amygdala and the inferior occipital gyrus (BA 18). Thus, we suggest that amygdala is involved in fast sensory boosting that may be important for attention reallocation to novel events, and that the strength of this response depends on individual state anxiety.
Negative BOLD fMRI Response in the Visual Cortex Carries Precise Stimulus-Specific Information  [PDF]
David Bressler, Nicole Spotswood, David Whitney
PLOS ONE , 2007, DOI: 10.1371/journal.pone.0000410
Abstract: Sustained positive BOLD (blood oxygen level-dependent) activity is employed extensively in functional magnetic resonance imaging (fMRI) studies as evidence for task or stimulus-specific neural responses. However, the presence of sustained negative BOLD activity (i.e., sustained responses that are lower than the fixation baseline) has remained more difficult to interpret. Some studies suggest that it results from local “blood stealing” wherein blood is diverted to neurally active regions without a concomitant change of neural activity in the negative BOLD regions. However, other evidence suggests that negative BOLD is a result of local neural suppression. In both cases, regions of negative BOLD response are usually interpreted as carrying relatively little, if any, stimulus-specific information (hence the predominant reliance on positive BOLD activity in fMRI). Here we show that the negative BOLD response resulting from visual stimulation can carry high information content that is stimulus-specific. Using a general linear model (GLM), we contrasted standard flickering stimuli to a fixation baseline and found regions of the visual cortex that displayed a sustained negative BOLD response, consistent with several previous studies. Within these negative BOLD regions, we compared patterns of fMRI activity generated by flickering Gabors that were systematically shifted in position. As the Gabors were shifted further from each other, the correlation in the spatial pattern of activity across a population of voxels (such as the population of V1 voxels that displayed a negative BOLD response) decreased significantly. Despite the fact that the BOLD signal was significantly negative (lower than fixation baseline), these regions were able to discriminate objects separated by less than 0.5 deg (at ~10 deg eccentricity). The results suggest that meaningful, stimulus-specific processing occurs even in regions that display a strong negative BOLD response.
Stimulus-Entrained Oscillatory Activity Propagates as Waves from Area 18 to 17 in Cat Visual Cortex  [PDF]
Lian Zheng, Haishan Yao
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0041960
Abstract: Previous studies in cat visual cortex reported that area 18 can actively drive neurons in area 17 through cortico-cortical projections. However, the dynamics of such cortico-cortical interaction remains unclear. Here we used multielectrode arrays to examine the spatiotemporal pattern of neuronal activity in cat visual cortex across the 17/18 border. We found that full-field contrast reversal gratings evoked oscillatory wave activity propagating from area 18 to 17. The wave direction was independent of the grating orientation, and could not be accounted for by the spatial distribution of receptive field latencies, suggesting that the waves are largely mediated by intrinsic connections in the cortex. Different from the evoked waves, spontaneous waves propagated along both directions across the 17/18 border. Together, our results suggest that visual stimulation may enhance the flow of information from area 18 to 17.
Stimulus Dependency of Object-Evoked Responses in Human Visual Cortex: An Inverse Problem for Category Specificity  [PDF]
Britta Graewe, Peter De Weerd, Reza Farivar, Miguel Castelo-Branco
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0030727
Abstract: Many studies have linked the processing of different object categories to specific event-related potentials (ERPs) such as the face-specific N170. Despite reports showing that object-related ERPs are influenced by visual stimulus features, there is consensus that these components primarily reflect categorical aspects of the stimuli. Here, we re-investigated this idea by systematically measuring the effects of visual feature manipulations on ERP responses elicited by both structure-from-motion (SFM)-defined and luminance-defined object stimuli. SFM objects elicited a novel component at 200–250 ms (N250) over parietal and posterior temporal sites. We found, however, that the N250 amplitude was unaffected by restructuring SFM stimuli into meaningless objects based on identical visual cues. This suggests that this N250 peak was not uniquely linked to categorical aspects of the objects, but is strongly determined by visual stimulus features. We provide strong support for this hypothesis by parametrically manipulating the depth range of both SFM- and luminance-defined object stimuli and showing that the N250 evoked by SFM stimuli as well as the well-known N170 to static faces were sensitive to this manipulation. Importantly, this effect could not be attributed to compromised object categorization in low depth stimuli, confirming a strong impact of visual stimulus features on object-related ERP signals. As ERP components linked with visual categorical object perception are likely determined by multiple stimulus features, this creates an interesting inverse problem when deriving specific perceptual processes from variations in ERP components.
Auditory Cortex Tracks Both Auditory and Visual Stimulus Dynamics Using Low-Frequency Neuronal Phase Modulation  [PDF]
Huan Luo,Zuxiang Liu,David Poeppel
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.1000445
Abstract: Integrating information across sensory domains to construct a unified representation of multi-sensory signals is a fundamental characteristic of perception in ecological contexts. One provocative hypothesis deriving from neurophysiology suggests that there exists early and direct cross-modal phase modulation. We provide evidence, based on magnetoencephalography (MEG) recordings from participants viewing audiovisual movies, that low-frequency neuronal information lies at the basis of the synergistic coordination of information across auditory and visual streams. In particular, the phase of the 2–7 Hz delta and theta band responses carries robust (in single trials) and usable information (for parsing the temporal structure) about stimulus dynamics in both sensory modalities concurrently. These experiments are the first to show in humans that a particular cortical mechanism, delta-theta phase modulation across early sensory areas, plays an important “active” role in continuously tracking naturalistic audio-visual streams, carrying dynamic multi-sensory information, and reflecting cross-sensory interaction in real time.
Page 1 /100
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.