Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Aquaporin 5 Polymorphisms and Rate of Lung Function Decline in Chronic Obstructive Pulmonary Disease  [PDF]
Nadia N. Hansel,Venkataramana Sidhaye,Nicholas M. Rafaels,Li Gao,Peisong Gao,Renaldo Williams,John E. Connett,Terri H. Beaty,Rasika A. Mathias,Robert A. Wise,Landon S. King,Kathleen C. Barnes
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0014226
Abstract: Aquaporin-5 (AQP5) can cause mucus overproduction and lower lung function. Genetic variants in the AQP5 gene might be associated with rate of lung function decline in chronic obstructive pulmonary disease (COPD).
Interleukin 23 Promotes Lung Adenocarcinoma A549 Cell Migration and Invasion  [cached]
Chinese Journal of Lung Cancer , 2012, DOI: 10.3779/j.issn.1009-3419.2012.05.01
Abstract: Background and objective Interleukin 23 (IL-23) is a pro-inflammatory cytokine that plays an important role in inflammatory disease and tumor microenvironment. The IL-23 receptor is expressed in colon, lung, and oral carcinomas. We performed this study to investigate whether IL-23 promotes directly carcinoma cell migration and invasion as well as further explore its mechanism. Methods The migration and invasion of human lung adenocarcinoma A549 cells induced by IL-23 were detected by a scratch test and Transwell experiment. MMP-9 expression of the mRNA and protein levels of A549 cells cultured with and without IL-23 was respectively detected by Real-time PCR and ELISA. The effect of IL-23 on A549 cells was further verified using anti-IL-23p19 neutralization antibody (Ab IL-23p19) to eliminate IL-23. Results IL-23 remarkably promoted A549 cell migration and invasion. MMP-9 expression in A549 cells was upregulated by IL-23 stimulation. In addition, the effect of IL-23 on the migration and invasion of A549, as well as the MMP-9 expression in A549 cells induced by IL-23, was eliminated by Ab IL-23p19. Conclusion IL-23 promotes the migration and invasion of A549 cells by inducing MMP-9 expression.
Hypoxia and Hypoxia Mimetics Decrease Aquaporin 5 (AQP5) Expression through Both Hypoxia Inducible Factor-1α and Proteasome-Mediated Pathways  [PDF]
Jitesh D. Kawedia, Fan Yang, Maureen A. Sartor, David Gozal, Maria Czyzyk-Krzeska, Anil G. Menon
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0057541
Abstract: The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5), we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70%) decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α) and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels.
A Novel Role for Aquaporin-5 in Enhancing Microtubule Organization and Stability  [PDF]
Venkataramana K. Sidhaye, Eric Chau, Vasudha Srivastava, Srinivas Sirimalle, Chinmayee Balabhadrapatruni, Neil R. Aggarwal, Franco R. D'Alessio, Douglas N. Robinson, Landon S. King
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0038717
Abstract: Aquaporin-5 (AQP5) is a water-specific channel located on the apical surface of airway epithelial cells. In addition to regulating transcellular water permeability, AQP5 can regulate paracellular permeability, though the mechanisms by which this occurs have not been determined. Microtubules also regulate paracellular permeability. Here, we report that AQP5 promotes microtubule assembly and helps maintain the assembled microtubule steady state levels with slower turnover dynamics in cells. Specifically, reduced levels of AQP5 correlated with lower levels of assembled microtubules and decreased paracellular permeability. In contrast, overexpression of AQP5 increased assembly of microtubules, with evidence of increased MT stability, and promoted the formation of long straight microtubules in the apical domain of the epithelial cells. These findings indicate that AQP5-mediated regulation of microtubule dynamics modulates airway epithelial barrier properties and epithelial function.
MiR-373-3p Promotes Invasion and Metastasis of Lung Adenocarcinoma Cells  [PDF]
Aibing WU, Jinmei LI, Kunpeng WU, Yanli MO, Yiping LUO, Haiyin YE, Xiang SHEN, Shujun LI, Yahai LIANG, Meilian LIU, Zhixiong YANG
- , 2015, DOI: : 10.3779/j.issn.1009-3419.2015.07.07
Abstract: Background and objective Lung cancer is the leading cause of cancer-related deaths worldwide, and metastasis is the major cause of death in lung cancer patients. MiR-373 is closely associated with invasion and metastasis in other tumor cells. This study explored the expression of miR-373-3p in non-small cell lung cancer (NSCLC) and its effect on the invasive and metastatic capabilities of lung adenocarcinoma cells, as well as their mechanisms of action. Methods The expression of miR-373-3p in NSCLC tissues and lung adenocarcinoma cell lines was detected by quantitative reverse transcription polymerase chain reaction. The roles of miR-373-3p in regulating lung adenocarcinoma cell invasion and metastatic properties were analyzed with miR-373-3p mimic/inhibitor-transfected cells via Transwell chamber assay. Matrix metalloproteinase MMP-9 and MMP-14 protein levels were detected by Western blot in lung cancer cells after transfection. Results MiR-373-3p was upregulated in 51 NSCLC tissues and 5 NSCLC cell lines. Gain-of-function and loss-of-function studies showed that overexpression of miR-373-3p promoted H1299 cell migration and invasion, which resulted in upregulation of MMP-9 and MMP-14. By contrast, miR-373-3p knockdown inhibited these processes in A549 cells and downregulated the expression of MMP-9 and MMP-14. Conclusion Our results demonstrated that miR-373-3p participated in the invasion and metastasis of lung adenocarcinoma cells, partly by upregulation of MMP-9 and MMP-14.
Over-Expression of LSD1 Promotes Proliferation, Migration and Invasion in Non-Small Cell Lung Cancer  [PDF]
Tangfeng Lv, Dongmei Yuan, Xiaohui Miao, Yanling Lv, Ping Zhan, Xiaokun Shen, Yong Song
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0035065
Abstract: Background Lysine specific demethylase 1 (LSD1) has been identified and biochemically characterized in epigenetics, but the pathological roles of its dysfunction in lung cancer remain to be elucidated. The aim of this study was to evaluate the prognostic significance of LSD1 expression in patients with non-small cell lung cancer (NSCLC) and to define its exact role in lung cancer proliferation, migration and invasion. Methods The protein levels of LSD1 in surgically resected samples from NSCLC patients were detected by immunohistochemistry or Western blotting. The mRNA levels of LSD1 were detected by qRT-PCR. The correlation of LSD1 expression with clinical characteristics and prognosis was determined by statistical analysis. Cell proliferation rate was assessed by MTS assay and immunofluorescence. Cell migration and invasion were detected by scratch test, matrigel assay and transwell invasion assay. Results LSD1 expression was higher in lung cancer tissue more than in normal lung tissue. Our results showed that over-expression of LSD1 protein were associated with shorter overall survival of NSCLC patients. LSD1 was localized mainly to the cancer cell nucleus. Interruption of LSD1 using siRNA or a chemical inhibitor, pargyline, suppressed proliferation, migration and invasion of A549, H460 and 293T cells. Meanwhile, over-expression of LSD1 enhanced cell growth. Finally, LSD1 was shown to regulate epithelial-to-mesenchymal transition in lung cancer cells. Conclusions Over-expression of LSD1 was associated with poor prognosis in NSCLC, and promoted tumor cell proliferation, migration and invasion. These results suggest that LSD1 is a tumor-promoting factor with promising therapeutic potential for NSCLC.
Phosphorylation of LCRMP-1 by GSK3β Promotes Filopoda Formation, Migration and Invasion Abilities in Lung Cancer Cells  [PDF]
Wen-Lung Wang, Tse-Ming Hong, Yih-Leong Chang, Chen-Tu Wu, Szu-Hua Pan, Pan-Chyr Yang
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0031689
Abstract: LCRMP-1, a novel isoform of CRMP-1, can promote cancer cell migration, invasion and associate with poor clinical outcome in patients with non-small-cell lung cancer (NSCLC). However, the underlying regulatory mechanisms of LCRMP-1 in cancer cell invasiveness still remain obscure. Here, we report that GSK3β can phosphorylate LCRMP-1 at Thr-628 in consensus sequences and this phosphorylation is crucial for function of LCRMP-1 to promote filopodia formation, migration and invasion in cancer cells. Impediment of Thr-628 phosphorylation attenuates the stimulatory effects of LCRMP-1 on filopodia forming, migration and invasion abilities in cancer cells; simultaneously, kinase-dead GSK3β diminishes regulation of LCRMP-1 on cancer cell invasion. Furthermore, we also found that patients with low-level Ser-9-phosphorylated GSK3β expression and high-level LCRMP-1 expression have worse overall survival than those with high-level inactive GSK3β expressions and low-level LCRMP-1 expressions (P<0.0001). Collectively, these results demonstrate that GSK3β-dependent phosphorylation of LCRMP-1 provides an important mechanism for regulation of LCRMP-1 on cancer cell invasiveness and clinical outcome.
Aquaporin 5 Expression and Its Relationship to Apoptosis in Different Grades of Differentiated Non-Small Cell Lung Carcinoma  [PDF]
Fidelis Chibhabha, Yaqiu Li, Yanyong Hao, Hui Zhao, Liming Hao
Advances in Lung Cancer (ALC) , 2016, DOI: 10.4236/alc.2016.51001
Abstract: Aquaporin 5 has been recently found as an important oncogenic marker whose expression levels seem to be determined by the level of cellular differentiation. Despite aquaporin volume decrease (AVD) being the most conserved earliest event in apoptosis, there is still a paucity of studies exploring on aquaporin expression and its relationship with apoptosis in cancer. The aim of this study was to investigate the expression of aquaporin 5 channel protein and to explore on its relationship with apoptosis in well and poorly differentiated non-small cell lung carcinoma both in-vivo and in-vitro. Findings from the study showed that the expression of AQP5 both in-vivo and in-vitro was dependent on the type and degree of tumour differentiation. In-vivo, an increase in aquaporin 5 expression was associated with an increased apoptosis in both poorly and highly differentiated adenocarcinoma (AC) while there was no association between aquaporin 5 expression and apoptosis in both poorly and highly differentiated squamous cell carcinoma (SCC). In vitro, differentiation therapy in the form of ATRA decreased both cell proliferation and increased the expression of AQP5 in A549 cells. The cytomorphological changes, expression of differentiation markers and flow cytometry apoptotic results were dependent on the dose of ATRA treatment. In conclusion, a higher expression of aquaporin 5 was found to promote the rate of the apoptotic process in lung adenocarcinoma (AC).
DLK1 Promotes Lung Cancer Cell Invasion through Upregulation of MMP9 Expression Depending on Notch Signaling  [PDF]
Lin Li, Jinjing Tan, Ying Zhang, Naijun Han, Xuebing Di, Ting Xiao, Shujun Cheng, Yanning Gao, Yu Liu
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0091509
Abstract: The transmembrane and secreted protein delta-like 1 homolog (DLK1) belongs to the EGF-like family. It is widely accepted that DLK1 plays important roles in regulating cell differentiation, such as adipogenesis and osteogenesis. Aberrant expression of DLK1 has been found in various types of human cancers, including lung cancer. A previous study in this lab has revealed that DLK1 is associated with tumor invasion, although the mechanism is still unknown. To explore the potential effects that DLK1 might have on invasion, DLK1 was overexpressed or knocked down in the human lung cancer cell lines. The protein's influences on cell invasion were subsequently evaluated. A transwell assay showed that DLK1 overexpression significantly promoted cancer cell invasion. Western blotting and gelatin zymography analysis indicated that DLK1 could affect both matrix metalloproteinase-9 (MMP9) expression and its extracellular activity. An analysis of NOTCH1 and HES1 gene expression and Notch intracellular domain (NICD) nuclear translocation during DLK1 stimulation or depletion demonstrated that DLK1 could activate Notch signaling in lung cancer cells. Additionally, the elevated expression of MMP9 induced by DLK1 stimulation could be significantly decreased by inhibiting Notch signaling using γ-secretase inhibitor (GSI). The data presented in this study suggest that DLK1 can promote the invasion of lung cancer cells by upregulating MMP9 expression, which depends on Notch signaling.
Aquaporin-5: A Marker Protein for Proliferation and Migration of Human Breast Cancer Cells  [PDF]
Hyun Jun Jung, Ji-Young Park, Hyo-Sung Jeon, Tae-Hwan Kwon
PLOS ONE , 2011, DOI: 10.1371/journal.pone.0028492
Abstract: Aquaporin (AQP) is a family of transmembrane proteins for water transport. Recent studies revealed that AQPs are likely to play a role in tumor progression and invasion. We aimed to examine the potential role of AQP5 in the progression of human breast cancer cells. Expression of AQP5 mRNA and protein was seen in human breast cancer cell line (both MCF7 and MDA-MB-231) by RT-PCR and immunoblotting analysis. Immunoperoxidase labeling of AQP5 was observed at ductal epithelial cells of human breast tissues. In benign tumor, AQP5 labeling was mainly seen at the apical domains of ductal epithelial cells. In contrast, in invasive ductal carcinoma, prominent AQP5 labeling was associated with cancer cells, whereas some ducts were unlabeled and apical polarity of AQP5 in ducts was lost. Cell proliferation (BrdU incorporation assay) and migration of MCF7 cells were significantly attenuated by lentivirus-mediated AQP5-shRNA transduction. Hyperosmotic stress induced by sorbitol treatment (100 mM, 24 h) reduced AQP5 expression in MCF7 cells, which was also associated with a significant reduction in cell proliferation and migration. Taken together, prominent AQP5 expression in breast cancer cells with the loss of polarity of ductal epithelial cells was seen during the progression of breast carcinoma. shRNA- or hyperosmotic stress-induced reduction in AQP5 expression of MCF7 cells was associated with significantly reduced cell proliferation and migration. In conclusion, AQP5 overexpression is likely to play a role in cell growth and metastasis of human breast cancer and could be a novel target for anti-breast cancer treatment.
Page 1 /100
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.