oalib
匹配条件: “” ,找到相关结果约100条。
列表显示的所有文章,均可免费获取
第1页/共100条
每页显示
HIV-1 Nef Targets MHC-I and CD4 for Degradation Via a Final Common β-COP–Dependent Pathway in T Cells  [PDF]
Malinda R. Schaefer,Elizabeth R. Wonderlich,Jeremiah F. Roeth,Jolie A. Leonard,Kathleen L. Collins
PLOS Pathogens , 2008, DOI: 10.1371/journal.ppat.1000131
Abstract: To facilitate viral infection and spread, HIV-1 Nef disrupts the surface expression of the viral receptor (CD4) and molecules capable of presenting HIV antigens to the immune system (MHC-I). To accomplish this, Nef binds to the cytoplasmic tails of both molecules and then, by mechanisms that are not well understood, disrupts the trafficking of each molecule in different ways. Specifically, Nef promotes CD4 internalization after it has been transported to the cell surface, whereas Nef uses the clathrin adaptor, AP-1, to disrupt normal transport of MHC-I from the TGN to the cell surface. Despite these differences in initial intracellular trafficking, we demonstrate that MHC-I and CD4 are ultimately found in the same Rab7+ vesicles and are both targeted for degradation via the activity of the Nef-interacting protein, β-COP. Moreover, we demonstrate that Nef contains two separable β-COP binding sites. One site, an arginine (RXR) motif in the N-terminal α helical domain of Nef, is necessary for maximal MHC-I degradation. The second site, composed of a di-acidic motif located in the C-terminal loop domain of Nef, is needed for efficient CD4 degradation. The requirement for redundant motifs with distinct roles supports a model in which Nef exists in multiple conformational states that allow access to different motifs, depending upon which cellular target is bound by Nef.
MHC Class I Endosomal and Lysosomal Trafficking Coincides with Exogenous Antigen Loading in Dendritic Cells  [PDF]
Genc Basha, Gregory Lizée, Anna T. Reinicke, Robyn P. Seipp, Kyla D. Omilusik, Wilfred A. Jefferies
PLOS ONE , 2008, DOI: 10.1371/journal.pone.0003247
Abstract: Background Cross-presentation by dendritic cells (DCs) is a crucial prerequisite for effective priming of cytotoxic T-cell responses against bacterial, viral and tumor antigens; however, this antigen presentation pathway remains poorly defined. Methodology/Principal Findings In order to develop a comprehensive understanding of this process, we tested the hypothesis that the internalization of MHC class I molecules (MHC-I) from the cell surface is directly involved in cross-presentation pathway and the loading of antigenic peptides. Here we provide the first examination of the internalization of MHC-I in DCs and we demonstrate that the cytoplasmic domain of MHC-I appears to act as an addressin domain to route MHC-I to both endosomal and lysosomal compartments of DCs, where it is demonstrated that loading of peptides derived from exogenously-derived proteins occurs. Furthermore, by chasing MHC-I from the cell surface of normal and transgenic DCs expressing mutant forms of MHC-I, we observe that a tyrosine-based endocytic trafficking motif is required for the constitutive internalization of MHC-I molecules from the cell surface into early endosomes and subsequently deep into lysosomal peptide-loading compartments. Finally, our data support the concept that multiple pathways of peptide loading of cross-presented antigens may exist depending on the chemical nature and size of the antigen requiring processing. Conclusions/Significance We conclude that DCs have ‘hijacked’ and adapted a common vacuolar/endocytic intracellular trafficking pathway to facilitate MHC I access to the endosomal and lysosomal compartments where antigen processing and loading and antigen cross-presentation takes place.
The HIV-1 Nef Protein Binds Argonaute-2 and Functions as a Viral Suppressor of RNA Interference  [PDF]
Madeeha Aqil, Afsar Raza Naqvi, Aalia Shahr Bano, Shahid Jameel
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0074472
Abstract: The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182 localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC). While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan (GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi (VSR).
Inefficient Nef-Mediated Downmodulation of CD3 and MHC-I Correlates with Loss of CD4+ T Cells in Natural SIV Infection  [PDF]
Michael Schindler,Jan Schm?kel,Anke Specht,Hui Li,Jan Münch,Mohammad Khalid,Donald L. Sodora,Beatrice H. Hahn,Guido Silvestri,Frank Kirchhoff
PLOS Pathogens , 2008, DOI: 10.1371/journal.ppat.1000107
Abstract: Recent data suggest that Nef-mediated downmodulation of TCR-CD3 may protect SIVsmm-infected sooty mangabeys (SMs) against the loss of CD4+ T cells. However, the mechanisms underlying this protective effect remain unclear. To further assess the role of Nef in nonpathogenic SIV infection, we cloned nef alleles from 11 SIVsmm-infected SMs with high (>500) and 15 animals with low (<500) CD4+ T-cells/μl in bulk into proviral HIV-1 IRES/eGFP constructs and analyzed their effects on the phenotype, activation, and apoptosis of primary T cells. We found that not only efficient Nef-mediated downmodulation of TCR-CD3 but also of MHC-I correlated with preserved CD4+ T cell counts, as well as with high numbers of Ki67+CD4+ and CD8+CD28+ T cells and reduced CD95 expression by CD4+ T cells. Moreover, effective MHC-I downregulation correlated with low proportions of effector and high percentages of na?ve and memory CD8+ T cells. We found that T cells infected with viruses expressing Nef alleles from the CD4low SM group expressed significantly higher levels of the CD69, interleukin (IL)-2 and programmed death (PD)-1 receptors than those expressing Nefs from the CD4high group. SIVsmm Nef alleles that were less active in downmodulating TCR-CD3 were also less potent in suppressing the activation of virally infected T cells and subsequent cell death. However, only nef alleles from a single animal with very low CD4+ T cell counts rendered T cells hyper-responsive to activation, similar to those of HIV-1. Our data suggest that Nef may protect the natural hosts of SIV against the loss of CD4+ T cells by at least two mechanisms: (i) downmodulation of TCR-CD3 to prevent activation-induced cell death and to suppress the induction of PD-1 that may impair T cell function and survival, and (ii) downmodulation of MHC-I to reduce CTL lysis of virally infected CD4+ T cells and/or bystander CD8+ T cell activation.
HIV-1 Nef Binds the DOCK2–ELMO1 Complex to Activate Rac and Inhibit Lymphocyte Chemotaxis  [PDF]
Ajit Janardhan,Tomek Swigut,Brian Hill,Michael P. Myers,Jacek Skowronski
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.0020006
Abstract: The infectious cycle of primate lentiviruses is intimately linked to interactions between cells of the immune system. Nef, a potent virulence factor, alters cellular environments to increase lentiviral replication in the host, yet the mechanisms underlying these effects have remained elusive. Since Nef likely functions as an adaptor protein, we exploited a proteomic approach to directly identify molecules that Nef targets to subvert the signaling machinery in T cells. We purified to near homogeneity a major Nef-associated protein complex from T cells and identified by mass spectroscopy its subunits as DOCK2–ELMO1, a key activator of Rac in antigen- and chemokine-initiated signaling pathways, and Rac. We show that Nef activates Rac in T cell lines and in primary T cells following infection with HIV-1 in the absence of antigenic stimuli. Nef activates Rac by binding the DOCK2–ELMO1 complex, and this interaction is linked to the abilities of Nef to inhibit chemotaxis and promote T cell activation. Our data indicate that Nef targets a critical switch that regulates Rac GTPases downstream of chemokine- and antigen-initiated signaling pathways. This interaction enables Nef to influence multiple aspects of T cell function and thus provides an important mechanism by which Nef impacts pathogenesis by primate lentiviruses.
HIV-1 Nef Binds the DOCK2–ELMO1 Complex to Activate Rac and Inhibit Lymphocyte Chemotaxis  [PDF]
Ajit Janardhan,Tomek Swigut,Brian Hill,Michael P Myers,Jacek Skowronski
PLOS Biology , 2004, DOI: 10.1371/journal.pbio.0020006
Abstract: The infectious cycle of primate lentiviruses is intimately linked to interactions between cells of the immune system. Nef, a potent virulence factor, alters cellular environments to increase lentiviral replication in the host, yet the mechanisms underlying these effects have remained elusive. Since Nef likely functions as an adaptor protein, we exploited a proteomic approach to directly identify molecules that Nef targets to subvert the signaling machinery in T cells. We purified to near homogeneity a major Nef-associated protein complex from T cells and identified by mass spectroscopy its subunits as DOCK2–ELMO1, a key activator of Rac in antigen- and chemokine-initiated signaling pathways, and Rac. We show that Nef activates Rac in T cell lines and in primary T cells following infection with HIV-1 in the absence of antigenic stimuli. Nef activates Rac by binding the DOCK2–ELMO1 complex, and this interaction is linked to the abilities of Nef to inhibit chemotaxis and promote T cell activation. Our data indicate that Nef targets a critical switch that regulates Rac GTPases downstream of chemokine- and antigen-initiated signaling pathways. This interaction enables Nef to influence multiple aspects of T cell function and thus provides an important mechanism by which Nef impacts pathogenesis by primate lentiviruses.
Structure of a Classical MHC Class I Molecule That Binds “Non-Classical” Ligands  [PDF]
Chee Seng Hee,Song Gao,Bernhard Loll,Marcia M. Miller,Barbara Uchanska-Ziegler,Oliver Daumke,Andreas Ziegler
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.1000557
Abstract: Chicken YF1 genes share a close sequence relationship with classical MHC class I loci but map outside of the core MHC region. To obtain insights into their function, we determined the structure of the YF1*7.1/β2-microgloblin complex by X-ray crystallography at 1.3 ? resolution. It exhibits the architecture typical of classical MHC class I molecules but possesses a hydrophobic binding groove that contains a non-peptidic ligand. This finding prompted us to reconstitute YF1*7.1 also with various self-lipids. Seven additional YF1*7.1 structures were solved, but only polyethyleneglycol molecules could be modeled into the electron density within the binding groove. However, an assessment of YF1*7.1 by native isoelectric focusing indicated that the molecules were also able to bind nonself-lipids. The ability of YF1*7.1 to interact with hydrophobic ligands is unprecedented among classical MHC class I proteins and might aid the chicken immune system to recognize a diverse ligand repertoire with a minimal number of MHC class I molecules.
Structure of a Classical MHC Class I Molecule That Binds “Non-Classical” Ligands  [PDF]
Chee Seng Hee equal contributor,Song Gao equal contributor,Bernhard Loll,Marcia M. Miller,Barbara Uchanska-Ziegler,Oliver Daumke,Andreas Ziegler
PLOS Biology , 2010, DOI: 10.1371/journal.pbio.1000557
Abstract: Chicken YF1 genes share a close sequence relationship with classical MHC class I loci but map outside of the core MHC region. To obtain insights into their function, we determined the structure of the YF1*7.1/β2-microgloblin complex by X-ray crystallography at 1.3 ? resolution. It exhibits the architecture typical of classical MHC class I molecules but possesses a hydrophobic binding groove that contains a non-peptidic ligand. This finding prompted us to reconstitute YF1*7.1 also with various self-lipids. Seven additional YF1*7.1 structures were solved, but only polyethyleneglycol molecules could be modeled into the electron density within the binding groove. However, an assessment of YF1*7.1 by native isoelectric focusing indicated that the molecules were also able to bind nonself-lipids. The ability of YF1*7.1 to interact with hydrophobic ligands is unprecedented among classical MHC class I proteins and might aid the chicken immune system to recognize a diverse ligand repertoire with a minimal number of MHC class I molecules.
Tetherin/BST-2 Antagonism by Nef Depends on a Direct Physical Interaction between Nef and Tetherin, and on Clathrin-mediated Endocytosis  [PDF]
Ruth Serra-Moreno ,Kerstin Zimmermann,Lawrence J. Stern,David T. Evans
PLOS Pathogens , 2013, DOI: 10.1371/journal.ppat.1003487
Abstract: Nef is the viral gene product employed by the majority of primate lentiviruses to overcome restriction by tetherin (BST-2 or CD317), an interferon-inducible transmembrane protein that inhibits the detachment of enveloped viruses from infected cells. Although the mechanisms of tetherin antagonism by HIV-1 Vpu and HIV-2 Env have been investigated in detail, comparatively little is known about tetherin antagonism by SIV Nef. Here we demonstrate a direct physical interaction between SIV Nef and rhesus macaque tetherin, define the residues in Nef required for tetherin antagonism, and show that the anti-tetherin activity of Nef is dependent on clathrin-mediated endocytosis. SIV Nef co-immunoprecipitated with rhesus macaque tetherin and the Nef core domain bound directly to a peptide corresponding to the cytoplasmic domain of rhesus tetherin by surface plasmon resonance. An analysis of alanine-scanning substitutions identified residues throughout the N-terminal, globular core and flexible loop regions of Nef that were required for tetherin antagonism. Although there was significant overlap with sequences required for CD4 downregulation, tetherin antagonism was genetically separable from this activity, as well as from other Nef functions, including MHC class I-downregulation and infectivity enhancement. Consistent with a role for clathrin and dynamin 2 in the endocytosis of tetherin, dominant-negative mutants of AP180 and dynamin 2 impaired the ability of Nef to downmodulate tetherin and to counteract restriction. Taken together, these results reveal that the mechanism of tetherin antagonism by Nef depends on a physical interaction between Nef and tetherin, requires sequences throughout Nef, but is genetically separable from other Nef functions, and leads to the removal of tetherin from sites of virus release at the plasma membrane by clathrin-mediated endocytosis.
Nef dimension of minimal models  [PDF]
Florin Ambro
Mathematics , 2003,
Abstract: We reduce the Abundance Conjecture in dimension 4 to the following numerical statement: if the canonical divisor K is nef and has maximal nef dimension, then K is big. From this point of view, we ``classify'' in dimension 2 nef divisors which have maximal nef dimension, but which are not big.
第1页/共100条
每页显示


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.