oalib
匹配条件: “” ,找到相关结果约100条。
列表显示的所有文章,均可免费获取
第1页/共100条
每页显示
Factors That Promote H3 Chromatin Integrity during Transcription Prevent Promiscuous Deposition of CENP-ACnp1 in Fission Yeast  [PDF]
Eun Shik Choi,Annelie Str?lfors,Sandra Catania,Araceli G. Castillo,J. Peter Svensson,Alison L. Pidoux,Karl Ekwall,Robin C. Allshire
PLOS Genetics , 2012, DOI: 10.1371/journal.pgen.1002985
Abstract: Specialized chromatin containing CENP-A nucleosomes instead of H3 nucleosomes is found at all centromeres. However, the mechanisms that specify the locations at which CENP-A chromatin is assembled remain elusive in organisms with regional, epigenetically regulated centromeres. It is known that normal centromeric DNA is transcribed in several systems including the fission yeast, Schizosaccharomyces pombe. Here, we show that factors which preserve stable histone H3 chromatin during transcription also play a role in preventing promiscuous CENP-ACnp1 deposition in fission yeast. Mutations in the histone chaperone FACT impair the maintenance of H3 chromatin on transcribed regions and promote widespread CENP-ACnp1 incorporation at non-centromeric sites. FACT has little or no effect on CENP-ACnp1 assembly at endogenous centromeres where CENP-ACnp1 is normally assembled. In contrast, Clr6 complex II (Clr6-CII; equivalent to Rpd3S) histone deacetylase function has a more subtle impact on the stability of transcribed H3 chromatin and acts to prevent the ectopic accumulation of CENP-ACnp1 at specific loci, including subtelomeric regions, where CENP-ACnp1 is preferentially assembled. Moreover, defective Clr6-CII function allows the de novo assembly of CENP-ACnp1 chromatin on centromeric DNA, bypassing the normal requirement for heterochromatin. Thus, our analyses show that alterations in the process of chromatin assembly during transcription can destabilize H3 nucleosomes and thereby allow CENP-ACnp1 to assemble in its place. We propose that normal centromeres provide a specific chromatin context that limits reassembly of H3 chromatin during transcription and thereby promotes the establishment of CENP-ACnp1 chromatin and associated kinetochores. These findings have important implications for genetic and epigenetic processes involved in centromere specification.
Mis17 Is a Regulatory Module of the Mis6-Mal2-Sim4 Centromere Complex That Is Required for the Recruitment of CenH3/CENP-A in Fission Yeast  [PDF]
Yoshiharu Shiroiwa,Takeshi Hayashi,Yohta Fujita,Alejandro Villar-Briones,Nobuyasu Ikai,Kojiro Takeda,Masahiro Ebe,Mitsuhiro Yanagida
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0017761
Abstract: The centromere is the chromosome domain on which the mitotic kinetochore forms for proper segregation. Deposition of the centromeric histone H3 (CenH3, CENP-A) is vital for the formation of centromere-specific chromatin. The Mis6-Mal2-Sim4 complex of the fission yeast S. pombe is required for the recruitment of CenH3 (Cnp1), but its function remains obscure.
Telomeric Repeats Facilitate CENP-ACnp1 Incorporation via Telomere Binding Proteins  [PDF]
Araceli G. Castillo, Alison L. Pidoux, Sandra Catania, Micka?l Durand-Dubief, Eun Shik Choi, Georgina Hamilton, Karl Ekwall, Robin C. Allshire
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0069673
Abstract: The histone H3 variant, CENP-A, is normally assembled upon canonical centromeric sequences, but there is no apparent obligate coupling of sequence and assembly, suggesting that centromere location can be epigenetically determined. To explore the tolerances and constraints on CENP-A deposition we investigated whether certain locations are favoured when additional CENP-ACnp1 is present in fission yeast cells. Our analyses show that additional CENP-ACnp1 accumulates within and close to heterochromatic centromeric outer repeats, and over regions adjacent to rDNA and telomeres. The use of minichromosome derivatives with unique DNA sequences internal to chromosome ends shows that telomeres are sufficient to direct CENP-ACnp1 deposition. However, chromosome ends are not required as CENP-ACnp1 deposition also occurs at telomere repeats inserted at an internal locus and correlates with the presence of H3K9 methylation near these repeats. The Ccq1 protein, which is known to bind telomere repeats and recruit telomerase, was found to be required to induce H3K9 methylation and thus promote the incorporation of CENP-ACnp1 near telomere repeats. These analyses demonstrate that at non-centromeric chromosomal locations the presence of heterochromatin influences the sites at which CENP-A is incorporated into chromatin and, thus, potentially the location of centromeres.
Histone H3 Localizes to the Centromeric DNA in Budding Yeast  [PDF]
Berit Lochmann,Dmitri Ivanov
PLOS Genetics , 2012, DOI: 10.1371/journal.pgen.1002739
Abstract: During cell division, segregation of sister chromatids to daughter cells is achieved by the poleward pulling force of microtubules, which attach to the chromatids by means of a multiprotein complex, the kinetochore. Kinetochores assemble at the centromeric DNA organized by specialized centromeric nucleosomes. In contrast to other eukaryotes, which typically have large repetitive centromeric regions, budding yeast CEN DNA is defined by a 125 bp sequence and assembles a single centromeric nucleosome. In budding yeast, as well as in other eukaryotes, the Cse4 histone variant (known in vertebrates as CENP-A) is believed to substitute for histone H3 at the centromeric nucleosome. However, the exact composition of the CEN nucleosome remains a subject of debate. We report the use of a novel ChIP approach to reveal the composition of the centromeric nucleosome and its localization on CEN DNA in budding yeast. Surprisingly, we observed a strong interaction of H3, as well as Cse4, H4, H2A, and H2B, but not histone chaperone Scm3 (HJURP in human) with the centromeric DNA. H3 localizes to centromeric DNA at all stages of the cell cycle. Using a sequential ChIP approach, we could demonstrate the co-occupancy of H3 and Cse4 at the CEN DNA. Our results favor a H3-Cse4 heterotypic octamer at the budding yeast centromere. Whether or not our model is correct, any future model will have to account for the stable association of histone H3 with the centromeric DNA.
Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres
Alicia Alonso, Bj?rn Fritz, Dan Hasson, Gy?rgy Abrusan, Fanny Cheung, Kinya Yoda, Bernhard Radlwimmer, Andreas G Ladurner, Peter E Warburton
Genome Biology , 2007, DOI: 10.1186/gb-2007-8-7-r148
Abstract: We have examined the distribution of CENP-A, as well as two additional centromeric chromatin-associated proteins (CENP-C and CENP-H), across neocentromeric DNA using chromatin immunoprecipitation (ChIP) on CHIP assays on custom genomic microarrays at three different resolutions. Analysis of two neocentromeres using a contiguous bacterial artificial chromosome (BAC) microarray spanning bands 13q31.3 to 13q33.1 shows that both CENP-C and CENP-H co-localize to the CENP-A chromatin domain. Using a higher resolution polymerase chain reaction (PCR)-amplicon microarray spanning the neocentromere, we find that the CENP-A chromatin is discontinuous, consisting of a major domain of about 87.8 kilobases (kb) and a minor domain of about 13.2 kb, separated by an approximately 158 kb region devoid of CENPs. Both CENP-A domains exhibit co-localization of CENP-C and CENP-H, defining a distinct inner kinetochore chromatin structure that is consistent with higher order chromatin looping models at centromeres. The PCR microarray data suggested varying density of CENP-A nucleosomes across the major domain, which was confirmed using a higher resolution oligo-based microarray.Centromeric chromatin consists of several CENP-A subdomains with highly discontinuous CENP-A chromatin at both the level of individual nucleosomes and at higher order chromatin levels, raising questions regarding the overall structure of centromeric chromatin.The centromere, which is the chromosome component that is responsible for the proper segregation of sister chromatids to daughter cells during cell division, is a specialized chromatin structure [1,2]. Centromeric chromatin has a distinctive nucleosome structure that contains the histone H3 variant centromere protein (CENP)-A [3-8]. CENP-A containing chromatin associates with a large number of proteins, which are assembled in a hierarchical manner [9-12]. Essential among the proximal proteins are several associated with the centromere throughout the cell cycle,
Mass spectrometry analysis of the variants of histone H3 and H4 of soybean and their post-translational modifications
Tao Wu, Tiezheng Yuan, Sau-Na Tsai, Chunmei Wang, Sai-Ming Sun, Hon-Ming Lam, Sai-Ming Ngai
BMC Plant Biology , 2009, DOI: 10.1186/1471-2229-9-98
Abstract: In soybean leaves, mono-, di- and tri-methylation at Lysine 4, Lysine 27 and Lysine 36, and acetylation at Lysine 14, 18 and 23 were detected in HISTONE H3. Lysine 27 was prone to being mono-methylated, while tri-methylation was predominant at Lysine 36. We also observed that Lysine 27 methylation and Lysine 36 methylation usually excluded each other in HISTONE H3. Although methylation at HISTONE H3 Lysine 79 was not reported in A. thaliana, mono- and di-methylated HISTONE H3 Lysine 79 were detected in soybean. Besides, acetylation at Lysine 8 and 12 of HISTONE H4 in soybean were identified. Using a combination of mass spectrometry and nano-liquid chromatography, two variants of HISTONE H3 were detected and their modifications were determined. They were different at positions of A31F41S87S90 (HISTONE variant H3.1) and T31Y41H87L90 (HISTONE variant H3.2), respectively. The methylation patterns in these two HISTONE H3 variants also exhibited differences. Lysine 4 and Lysine 36 methylation were only detected in HISTONE H3.2, suggesting that HISTONE variant H3.2 might be associated with actively transcribing genes. In addition, two variants of histone H4 (H4.1 and H4.2) were also detected, which were missing in other organisms. In the histone variant H4.1 and H4.2, the amino acid 60 was isoleucine and valine, respectively.This work revealed several distinct variants of soybean histone and their modifications that were different from A. thaliana, thus providing important biological information toward further understanding of the histone modifications and their functional significance in higher plants.Histone modifications and histone variants play critical roles in regulating gene expression, modulating the cell cycle, and are responsible for maintaining genome stability [1-3]. The fundamental structural unit of chromatin in eukaryotic cells is the nucleosome, that consists of 146 base pairs (bp) of DNA wrapped around a histone octamer, each of which is formed by two cop
CenH3/CID Incorporation Is Not Dependent on the Chromatin Assembly Factor CHD1 in Drosophila  [PDF]
Valerie Podhraski,Beatriz Campo-Fernandez,Hildegard W?rle,Paolo Piatti,Harald Niederegger,Günther B?ck,Dmitry V. Fyodorov,Alexandra Lusser
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0010120
Abstract: CHD1 is a SNF2-related ATPase that is required for the genome-wide incorporation of variant histone H3.3 in the paternal pronucleus as well as in transcriptionally active nuclei in Drosophila embryos. The S. pombe and vertebrate orthologs of CHD1 have been implicated in the assembly of the centromeric histone H3 variant CenH3CENP-A, which occurs in a DNA replication-independent manner. Here, we examined whether CHD1 participates in the assembly of CenH3CID in Drosophila. In contrast to the findings in fission yeast and vertebrate cells, our evidence clearly argues against such a role for CHD1 in Drosophila. CHD1 does not localize to centromeres in either S2 cells or developing fly embryos. Down-regulation of CHD1 in S2 cells by RNAi reveals unchanged levels of CenH3CID at the centromeres. Most notably, ablation of functional CHD1 in Chd1 mutant fly embryos does not interfere with centromere and kinetochore assembly, as the levels and localization of CenH3CID, CENP-C and BubR1 in the mutant embryos remain similar to those seen in wild-type embryos. These results indicate that Drosophila CHD1 has no direct function in the incorporation of the centromeric H3 variant CenH3CID into chromatin. Therefore, centromeric chromatin assembly may involve different mechanisms in different organisms.
DNA Topoisomerase III Localizes to Centromeres and Affects Centromeric CENP-A Levels in Fission Yeast  [PDF]
Ulrika Norman-Axelsson,Micka?l Durand-Dubief,Punit Prasad,Karl Ekwall
PLOS Genetics , 2013, DOI: 10.1371/journal.pgen.1003371
Abstract: Centromeres are specialized chromatin regions marked by the presence of nucleosomes containing the centromere-specific histone H3 variant CENP-A, which is essential for chromosome segregation. Assembly and disassembly of nucleosomes is intimately linked to DNA topology, and DNA topoisomerases have previously been implicated in the dynamics of canonical H3 nucleosomes. Here we show that Schizosaccharomyces pombe Top3 and its partner Rqh1 are involved in controlling the levels of CENP-ACnp1 at centromeres. Both top3 and rqh1 mutants display defects in chromosome segregation. Using chromatin immunoprecipitation and tiling microarrays, we show that Top3, unlike Top1 and Top2, is highly enriched at centromeric central domains, demonstrating that Top3 is the major topoisomerase in this region. Moreover, centromeric Top3 occupancy positively correlates with CENP-ACnp1 occupancy. Intriguingly, both top3 and rqh1 mutants display increased relative enrichment of CENP-ACnp1 at centromeric central domains. Thus, Top3 and Rqh1 normally limit the levels of CENP-ACnp1 in this region. This new role is independent of the established function of Top3 and Rqh1 in homologous recombination downstream of Rad51. Therefore, we hypothesize that the Top3-Rqh1 complex has an important role in controlling centromere DNA topology, which in turn affects the dynamics of CENP-ACnp1 nucleosomes.
Solution Scattering and FRET Studies on Nucleosomes Reveal DNA Unwrapping Effects of H3 and H4 Tail Removal  [PDF]
Kurt Andresen, Isabel Jimenez-Useche, Steven C. Howell, Chongli Yuan, Xiangyun Qiu
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0078587
Abstract: Using a combination of small-angle X-ray scattering (SAXS) and fluorescence resonance energy transfer (FRET) measurements we have determined the role of the H3 and H4 histone tails, independently, in stabilizing the nucleosome DNA terminal ends from unwrapping from the nucleosome core. We have performed solution scattering experiments on recombinant wild-type, H3 and H4 tail-removed mutants and fit all scattering data with predictions from PDB models and compared these experiments to complementary DNA-end FRET experiments. Based on these combined SAXS and FRET studies, we find that while all nucleosomes exhibited DNA unwrapping, the extent of this unwrapping is increased for nucleosomes with the H3 tails removed but, surprisingly, decreased in nucleosomes with the H4 tails removed. Studies of salt concentration effects show a minimum amount of DNA unwrapping for all complexes around 50-100mM of monovalent ions. These data exhibit opposite roles for the positively-charged nucleosome tails, with the ability to decrease access (in the case of the H3 histone) or increase access (in the case of the H4 histone) to the DNA surrounding the nucleosome. In the range of salt concentrations studied (0-200mM KCl), the data point to the H4 tail-removed mutant at physiological (50-100mM) monovalent salt concentration as the mononucleosome with the least amount of DNA unwrapping.
Histone Acetyl Transferase 1 Is Essential for Mammalian Development, Genome Stability, and the Processing of Newly Synthesized Histones H3 and H4  [PDF]
Prabakaran Nagarajan,Zhongqi Ge,Bianca Sirbu,Cheryl Doughty,Paula A. Agudelo Garcia,Michaela Schlederer,Anthony T. Annunziato,David Cortez,Lukas Kenner,Mark R. Parthun
PLOS Genetics , 2013, DOI: 10.1371/journal.pgen.1003518
Abstract: Histone acetyltransferase 1 is an evolutionarily conserved type B histone acetyltransferase that is thought to be responsible for the diacetylation of newly synthesized histone H4 on lysines 5 and 12 during chromatin assembly. To understand the function of this enzyme in a complex organism, we have constructed a conditional mouse knockout model of Hat1. Murine Hat1 is essential for viability, as homozygous deletion of Hat1 results in neonatal lethality. The lungs of embryos and pups genetically deficient in Hat1 were much less mature upon histological evaluation. The neonatal lethality is due to severe defects in lung development that result in less aeration and respiratory distress. Many of the Hat1?/? neonates also display significant craniofacial defects with abnormalities in the bones of the skull and jaw. Hat1?/? mouse embryonic fibroblasts (MEFs) are defective in cell proliferation and are sensitive to DNA damaging agents. In addition, the Hat1?/? MEFs display a marked increase in genome instability. Analysis of histone dynamics at sites of replication-coupled chromatin assembly demonstrates that Hat1 is not only responsible for the acetylation of newly synthesized histone H4 but is also required to maintain the acetylation of histone H3 on lysines 9, 18, and 27 during replication-coupled chromatin assembly.
第1页/共100条
每页显示


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.