Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
The De Novo Cytosine Methyltransferase DRM2 Requires Intact UBA Domains and a Catalytically Mutated Paralog DRM3 during RNA–Directed DNA Methylation in Arabidopsis thaliana  [PDF]
Ian R. Henderson,Angelique Deleris,William Wong,Xuehua Zhong,Hang Gyeong Chin,Gregory A. Horwitz,Krystyna A. Kelly,Sriharsa Pradhan,Steven E. Jacobsen
PLOS Genetics , 2010, DOI: 10.1371/journal.pgen.1001182
Abstract: Eukaryotic DNA cytosine methylation can be used to transcriptionally silence repetitive sequences, including transposons and retroviruses. This silencing is stable between cell generations as cytosine methylation is maintained epigenetically through DNA replication. The Arabidopsis thaliana Dnmt3 cytosine methyltransferase ortholog DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) is required for establishment of small interfering RNA (siRNA) directed DNA methylation. In mammals PIWI proteins and piRNA act in a convergently evolved RNA–directed DNA methylation system that is required to repress transposon expression in the germ line. De novo methylation may also be independent of RNA interference and small RNAs, as in Neurospora crassa. Here we identify a clade of catalytically mutated DRM2 paralogs in flowering plant genomes, which in A.thaliana we term DOMAINS REARRANGED METHYLTRANSFERASE3 (DRM3). Despite being catalytically mutated, DRM3 is required for normal maintenance of non-CG DNA methylation, establishment of RNA–directed DNA methylation triggered by repeat sequences and accumulation of repeat-associated small RNAs. Although the mammalian catalytically inactive Dnmt3L paralogs act in an analogous manner, phylogenetic analysis indicates that the DRM and Dnmt3 protein families diverged independently in plants and animals. We also show by site-directed mutagenesis that both the DRM2 N-terminal UBA domains and C-terminal methyltransferase domain are required for normal RNA–directed DNA methylation, supporting an essential targeting function for the UBA domains. These results suggest that plant and mammalian RNA–directed DNA methylation systems consist of a combination of ancestral and convergent features.
An 11bp Region with Stem Formation Potential Is Essential for de novo DNA Methylation of the RPS Element  [PDF]
Matthew Gentry, Peter Meyer
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0063652
Abstract: The initiation of DNA methylation in Arabidopsis is controlled by the RNA-directed DNA methylation (RdDM) pathway that uses 24nt siRNAs to recruit de novo methyltransferase DRM2 to the target site. We previously described the REPETITIVE PETUNIA SEQUENCE (RPS) fragment that acts as a hot spot for de novo methylation, for which it requires the cooperative activity of all three methyltransferases MET1, CMT3 and DRM2, but not the RdDM pathway. RPS contains two identical 11nt elements in inverted orientation, interrupted by a 18nt spacer, which resembles the features of a stemloop structure. The analysis of deletion/substitution derivatives of this region showed that deletion of one 11nt element RPS is sufficient to eliminate de novo methylation of RPS. In addition, deletion of a 10nt region directly adjacent to one of the 11nt elements, significantly reduced de novo methylation. When both 11nt regions were replaced by two 11nt elements with altered DNA sequence but unchanged inverted repeat homology, DNA methylation was not affected, indicating that de novo methylation was not targeted to a specific DNA sequence element. These data suggest that de novo DNA methylation is attracted by a secondary structure to which the two 11nt elements contribute, and that the adjacent 10nt region influences the stability of this structure. This resembles the recognition of structural features by DNA methyltransferases in animals and suggests that similar mechanisms exist in plants.
Inheritance of an Epigenetic Mark: The CpG DNA Methyltransferase 1 Is Required for De Novo Establishment of a Complex Pattern of Non-CpG Methylation  [PDF]
Valérie Grandjean, Ruken Yaman, Fran?ois Cuzin, Minoo Rassoulzadegan
PLOS ONE , 2007, DOI: 10.1371/journal.pone.0001136
Abstract: Site-specific methylation of cytosines is a key epigenetic mark of vertebrate DNA. While a majority of the methylated residues are in the symmetrical (meC)pG:Gp(meC) configuration, a smaller, but significant fraction is found in the CpA, CpT and CpC asymmetric (non-CpG) dinucleotides. CpG methylation is reproducibly maintained by the activity of the DNA methyltransferase 1 (Dnmt1) on the newly replicated hemimethylated substrates (meC)pG:GpC. On the other hand, establishment and hereditary maintenance of non-CpG methylation patterns have not been analyzed in detail. We previously reported the occurrence of site- and allele-specific methylation at both CpG and non-CpG sites. Here we characterize a hereditary complex of non-CpG methylation, with the transgenerational maintenance of three distinct profiles in a constant ratio, associated with extensive CpG methylation. These observations raised the question of the signal leading to the maintenance of the pattern of asymmetric methylation. The complete non-CpG pattern was reinstated at each generation in spite of the fact that the majority of the sperm genomes contained either none or only one methylated non-CpG site. This observation led us to the hypothesis that the stable CpG patterns might act as blueprints for the maintenance of non-CpG DNA methylation. As predicted, non-CpG DNA methylation profiles were abrogated in a mutant lacking Dnmt1, the enzymes responsible for CpG methylation, but not in mutants defective for either Dnmt3a or Dnmt2.
Three SRA-Domain Methylcytosine-Binding Proteins Cooperate to Maintain Global CpG Methylation and Epigenetic Silencing in Arabidopsis  [PDF]
Hye Ryun Woo,Travis A. Dittmer,Eric J. Richards
PLOS Genetics , 2008, DOI: 10.1371/journal.pgen.1000156
Abstract: Methylcytosine-binding proteins decipher the epigenetic information encoded by DNA methylation and provide a link between DNA methylation, modification of chromatin structure, and gene silencing. VARIANT IN METHYLATION 1 (VIM1) encodes an SRA (SET- and RING-associated) domain methylcytosine-binding protein in Arabidopsis thaliana, and loss of VIM1 function causes centromere DNA hypomethylation and centromeric heterochromatin decondensation in interphase. In the Arabidopsis genome, there are five VIM genes that share very high sequence similarity and encode proteins containing a PHD domain, two RING domains, and an SRA domain. To gain further insight into the function and potential redundancy among the VIM proteins, we investigated strains combining different vim mutations and transgenic vim knock-down lines that down-regulate multiple VIM family genes. The vim1 vim3 double mutant and the transgenic vim knock-down lines showed decreased DNA methylation primarily at CpG sites in genic regions, as well as repeated sequences in heterochromatic regions. In addition, transcriptional silencing was released in these plants at most heterochromatin regions examined. Interestingly, the vim1 vim3 mutant and vim knock-down lines gained ectopic CpHpH methylation in the 5S rRNA genes against a background of CpG hypomethylation. The vim1 vim2 vim3 triple mutant displayed abnormal morphological phenotypes including late flowering, which is associated with DNA hypomethylation of the 5′ region of FWA and release of FWA gene silencing. Our findings demonstrate that VIM1, VIM2, and VIM3 have overlapping functions in maintenance of global CpG methylation and epigenetic transcriptional silencing.
SHH1, a Homeodomain Protein Required for DNA Methylation, As Well As RDR2, RDM4, and Chromatin Remodeling Factors, Associate with RNA Polymerase IV  [PDF]
Julie A. Law,Ajay A. Vashisht,James A. Wohlschlegel ,Steven E. Jacobsen
PLOS Genetics , 2011, DOI: 10.1371/journal.pgen.1002195
Abstract: DNA methylation is an evolutionarily conserved epigenetic modification that is critical for gene silencing and the maintenance of genome integrity. In Arabidopsis thaliana, the de novo DNA methyltransferase, DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), is targeted to specific genomic loci by 24 nt small interfering RNAs (siRNAs) through a pathway termed RNA–directed DNA methylation (RdDM). Biogenesis of the targeting siRNAs is thought to be initiated by the activity of the plant-specific RNA polymerase IV (Pol-IV). However, the mechanism through which Pol-IV is targeted to specific genomic loci and whether factors other than the core Pol-IV machinery are required for Pol-IV activity remain unknown. Through the affinity purification of NUCLEAR RNA POLYMERASE D1 (NRPD1), the largest subunit of the Pol-IV polymerase, we found that several previously identified RdDM components co-purify with Pol-IV, namely RNA–DEPENDENT RNA POLYMERASE 2 (RDR2), CLASSY1 (CLSY1), and RNA–DIRECTED DNA METHYLATION 4 (RDM4), suggesting that the upstream siRNA generating portion of the RdDM pathway may be more physically coupled than previously envisioned. A homeodomain protein, SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1), was also found to co-purify with NRPD1; and we demonstrate that SHH1 is required for de novo and maintenance DNA methylation, as well as for the accumulation of siRNAs at specific loci, confirming it is a bonafide component of the RdDM pathway.
The Ability to Form Homodimers Is Essential for RDM1 to Function in RNA-Directed DNA Methylation  [PDF]
Taku Sasaki, Zdravko J. Lorkovi?, Shih-Chieh Liang, Antonius J. M. Matzke, Marjori Matzke
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0088190
Abstract: RDM1 (RNA-DIRECTED DNA METHYLATION1) is a small plant-specific protein required for RNA-directed DNA methylation (RdDM). RDM1 interacts with RNA polymerase II (Pol II), ARGONAUTE4 (AGO4), and the de novo DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) and binds to methylated single stranded DNA. As the only protein identified so far that interacts directly with DRM2, RDM1 plays a pivotal role in the RdDM mechanism by linking the de novo DNA methyltransferase activity to AGO4, which binds short interfering RNAs (siRNAs) that presumably base-pair with Pol II or Pol V scaffold transcripts synthesized at target loci. RDM1 also acts together with the chromatin remodeler DEFECTIVE IN RNA-DIRECTED DNA METHYLATION1 (DRD1) and the structural-maintenance-of-chromosomes solo hinge protein DEFECTIVE IN MERISTEM SILENCING3 (DMS3) to form the DDR complex, which facilitates synthesis of Pol V scaffold transcripts. The manner in which RDM1 acts in both the DDR complex and as a factor bridging DRM2 and AGO4 remains unclear. RDM1 contains no known protein domains but a prior structural analysis suggested distinct regions that create a hydrophobic pocket and promote homodimer formation, respectively. We have tested several mutated forms of RDM1 altered in the predicted pocket and dimerization regions for their ability to complement defects in RdDM and transcriptional gene silencing, support synthesis of Pol V transcripts, form homodimers, and interact with DMS3. Our results indicate that the ability to form homodimers is essential for RDM1 to function fully in the RdDM pathway and may be particularly important during the de novo methylation step.
Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages
Rubén Rangel-Salazar, Marie Wickstr?m-Lindholm, Carlos A Aguilar-Salinas, Yolanda Alvarado-Caudillo, Kristina BV D?ssing, Manel Esteller, Emmanuel Labourier, Gertrud Lund, Finn C Nielsen, Dalia Rodríguez-Ríos, Martha O Solís-Martínez, Katarzyna Wrobel, Kazimierz Wrobel, Silvio Zaina
BMC Genomics , 2011, DOI: 10.1186/1471-2164-12-582
Abstract: Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway.Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.Atherosclerosis is characterised by the accumulation of lipids, extracellular matrix, smooth muscle, inflammatory and immune cells in the arterial wall [1]. Diet-related and environment-related factors are pivotal determinants of atherosclerosis risk, thus epigenome remodelling by such factors has been proposed as an important underlying molecular mechanism for that disease [2]. According to this view, environmental and nutritional risk factors might impose stable epigenetic "hits" during an individual's lifetime that, possibly in synergy with other concomitant molecular changes, cause anti- or pro-atherogenic gene expression patterns [3,4]. Indeed, altered DNA methylation patterns have been detected in atherosclerosis [5-7]. Such changes may at least in part be caused by abnormal lipoprotein profiles, given their central role in atherogenesis [1]. This idea is supported by our previous observation that a very low density- and low density lipoprotein (VLDL and LDL, res
Strict De Novo Methylation of the 35S Enhancer Sequence in Gentian  [PDF]
Kei-ichiro Mishiba,Satoshi Yamasaki,Takashi Nakatsuka,Yoshiko Abe,Hiroyuki Daimon,Masayuki Oda,Masahiro Nishihara
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0009670
Abstract: A novel transgene silencing phenomenon was found in the ornamental plant, gentian (Gentiana triflora × G. scabra), in which the introduced Cauliflower mosaic virus (CaMV) 35S promoter region was strictly methylated, irrespective of the transgene copy number and integrated loci. Transgenic tobacco having the same vector did not show the silencing behavior. Not only unmodified, but also modified 35S promoters containing a 35S enhancer sequence were found to be highly methylated in the single copy transgenic gentian lines. The 35S core promoter (?90)-introduced transgenic lines showed a small degree of methylation, implying that the 35S enhancer sequence was involved in the methylation machinery. The rigorous silencing phenomenon enabled us to analyze methylation in a number of the transgenic lines in parallel, which led to the discovery of a consensus target region for de novo methylation, which comprised an asymmetric cytosine (CpHpH; H is A, C or T) sequence. Consequently, distinct footprints of de novo methylation were detected in each (modified) 35S promoter sequence, and the enhancer region (?148 to ?85) was identified as a crucial target for de novo methylation. Electrophoretic mobility shift assay (EMSA) showed that complexes formed in gentian nuclear extract with the ?149 to ?124 and ?107 to ?83 region probes were distinct from those of tobacco nuclear extracts, suggesting that the complexes might contribute to de novo methylation. Our results provide insights into the phenomenon of sequence- and species- specific gene silencing in higher plants.
Targeting of De Novo DNA Methylation Throughout the Oct-4 Gene Regulatory Region in Differentiating Embryonic Stem Cells  [PDF]
Rodoniki Athanasiadou,Dina de Sousa,Kevin Myant,Cara Merusi,Irina Stancheva,Adrian Bird
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0009937
Abstract: Differentiation of embryonic stem (ES) cells is accompanied by silencing of the Oct-4 gene and de novo DNA methylation of its regulatory region. Previous studies have focused on the requirements for promoter region methylation. We therefore undertook to analyse the progression of DNA methylation of the ~2000 base pair regulatory region of Oct-4 in ES cells that are wildtype or deficient for key proteins. We find that de novo methylation is initially seeded at two discrete sites, the proximal enhancer and distal promoter, spreading later to neighboring regions, including the remainder of the promoter. De novo methyltransferases Dnmt3a and Dnmt3b cooperate in the initial targeted stage of de novo methylation. Efficient completion of the pattern requires Dnmt3a and Dnmt1, but not Dnmt3b. Methylation of the Oct-4 promoter depends on the histone H3 lysine 9 methyltransferase G9a, as shown previously, but CpG methylation throughout most of the regulatory region accumulates even in the absence of G9a. Analysis of the Oct-4 regulatory domain as a whole has allowed us to detect targeted de novo methylation and to refine our understanding the roles of key protein components in this process.
RNA-directed DNA methylation and demethylation in plants
Viswanathan Chinnusamy,Jian-Kang Zhu
Science China Life Sciences , 2009, DOI: 10.1007/s11427-009-0052-1
Abstract: RNA-directed DNA methylation (RdDM) is a nuclear process in which small interfering RNAs (siRNAs) direct the cytosine methylation of DNA sequences that are complementary to the siRNAs. In plants, double stranded-RNAs (dsRNAs) generated by RNA-dependent RNA polymerase 2 (RDR2) serve as precursors for Dicer-like 3 dependent biogenesis of 24-nt siRNAs. Plant specific RNA polymerase IV (Pol IV) is presumed to generate the initial RNA transcripts that are substrates for RDR2. siRNAs are loaded onto an argonaute4-containing RISC (RNA-induced silencing complex) that targets the de novo DNA methyltransferase DRM2 to RdDM target loci. Nascent RNA transcripts from the target loci are generated by another plant-specific RNA polymerase, Pol V, and these transcripts help recruit complementary siRNAs and the associated RdDM effector complex to the target loci in a transcription-coupled DNA methylation process. Small RNA binding proteins such as ROS3 may direct target-specific DNA demethylation by the ROS1 family of DNA demethylases. Chromatin remodeling enzymes and histone modifying enzymes also participate in DNA methylation and possibly demethylation. One of the well studied functions of RdDM is transposon silencing and genome stability. In addition, RdDM is important for paramutation, imprinting, gene regulation, and plant development. Locus-specific DNA methylation and demethylation, and transposon activation under abiotic stresses suggest that RdDM is also important in stress responses of plants. Further studies will help illuminate the functions of RdDM in the dynamic control of epigenomes during development and environmental stress responses.
Page 1 /100
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.