oalib
Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
The Cell Cycle Timing of Centromeric Chromatin Assembly in Drosophila Meiosis Is Distinct from Mitosis Yet Requires CAL1 and CENP-C  [PDF]
Elaine M. Dunleavy equal contributor,Nicole L. Beier equal contributor,Walter Gorgescu,Jonathan Tang,Sylvain V. Costes,Gary H. Karpen
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.1001460
Abstract: CENP-A (CID in flies) is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote.
Premitotic Assembly of Human CENPs -T and -W Switches Centromeric Chromatin to a Mitotic State  [PDF]
Lisa Prendergast,Chelly van Vuuren,Agnieszka Kaczmarczyk,Volker Doering,Daniela Hellwig,Nadine Quinn,Christian Hoischen,Stephan Diekmann,Kevin F. Sullivan
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.1001082
Abstract: Centromeres are differentiated chromatin domains, present once per chromosome, that direct segregation of the genome in mitosis and meiosis by specifying assembly of the kinetochore. They are distinct genetic loci in that their identity in most organisms is determined not by the DNA sequences they are associated with, but through specific chromatin composition and context. The core nucleosomal protein CENP-A/cenH3 plays a primary role in centromere determination in all species and directs assembly of a large complex of associated proteins in vertebrates. While CENP-A itself is stably transmitted from one generation to the next, the nature of the template for centromere replication and its relationship to kinetochore function are as yet poorly understood. Here, we investigate the assembly and inheritance of a histone fold complex of the centromere, the CENP-T/W complex, which is integrated with centromeric chromatin in association with canonical histone H3 nucleosomes. We have investigated the cell cycle regulation, timing of assembly, generational persistence, and requirement for function of CENPs -T and -W in the cell cycle in human cells. The CENP-T/W complex assembles through a dynamic exchange mechanism in late S-phase and G2, is required for mitosis in each cell cycle and does not persist across cell generations, properties reciprocal to those measured for CENP-A. We propose that the CENP-A and H3-CENP-T/W nucleosome components of the centromere are specialized for centromeric and kinetochore activities, respectively. Segregation of the assembly mechanisms for the two allows the cell to switch between chromatin configurations that reciprocally support the replication of the centromere and its conversion to a mitotic state on postreplicative chromatin.
Premitotic Assembly of Human CENPs -T and -W Switches Centromeric Chromatin to a Mitotic State  [PDF]
Lisa Prendergast,Chelly van Vuuren,Agnieszka Kaczmarczyk,Volker Doering,Daniela Hellwig,Nadine Quinn,Christian Hoischen,Stephan Diekmann,Kevin F. Sullivan
PLOS Biology , 2011, DOI: 10.1371/journal.pbio.1001082
Abstract: Centromeres are differentiated chromatin domains, present once per chromosome, that direct segregation of the genome in mitosis and meiosis by specifying assembly of the kinetochore. They are distinct genetic loci in that their identity in most organisms is determined not by the DNA sequences they are associated with, but through specific chromatin composition and context. The core nucleosomal protein CENP-A/cenH3 plays a primary role in centromere determination in all species and directs assembly of a large complex of associated proteins in vertebrates. While CENP-A itself is stably transmitted from one generation to the next, the nature of the template for centromere replication and its relationship to kinetochore function are as yet poorly understood. Here, we investigate the assembly and inheritance of a histone fold complex of the centromere, the CENP-T/W complex, which is integrated with centromeric chromatin in association with canonical histone H3 nucleosomes. We have investigated the cell cycle regulation, timing of assembly, generational persistence, and requirement for function of CENPs -T and -W in the cell cycle in human cells. The CENP-T/W complex assembles through a dynamic exchange mechanism in late S-phase and G2, is required for mitosis in each cell cycle and does not persist across cell generations, properties reciprocal to those measured for CENP-A. We propose that the CENP-A and H3-CENP-T/W nucleosome components of the centromere are specialized for centromeric and kinetochore activities, respectively. Segregation of the assembly mechanisms for the two allows the cell to switch between chromatin configurations that reciprocally support the replication of the centromere and its conversion to a mitotic state on postreplicative chromatin.
CenH3/CID Incorporation Is Not Dependent on the Chromatin Assembly Factor CHD1 in Drosophila  [PDF]
Valerie Podhraski,Beatriz Campo-Fernandez,Hildegard W?rle,Paolo Piatti,Harald Niederegger,Günther B?ck,Dmitry V. Fyodorov,Alexandra Lusser
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0010120
Abstract: CHD1 is a SNF2-related ATPase that is required for the genome-wide incorporation of variant histone H3.3 in the paternal pronucleus as well as in transcriptionally active nuclei in Drosophila embryos. The S. pombe and vertebrate orthologs of CHD1 have been implicated in the assembly of the centromeric histone H3 variant CenH3CENP-A, which occurs in a DNA replication-independent manner. Here, we examined whether CHD1 participates in the assembly of CenH3CID in Drosophila. In contrast to the findings in fission yeast and vertebrate cells, our evidence clearly argues against such a role for CHD1 in Drosophila. CHD1 does not localize to centromeres in either S2 cells or developing fly embryos. Down-regulation of CHD1 in S2 cells by RNAi reveals unchanged levels of CenH3CID at the centromeres. Most notably, ablation of functional CHD1 in Chd1 mutant fly embryos does not interfere with centromere and kinetochore assembly, as the levels and localization of CenH3CID, CENP-C and BubR1 in the mutant embryos remain similar to those seen in wild-type embryos. These results indicate that Drosophila CHD1 has no direct function in the incorporation of the centromeric H3 variant CenH3CID into chromatin. Therefore, centromeric chromatin assembly may involve different mechanisms in different organisms.
Intergenic Locations of Rice Centromeric Chromatin  [PDF]
Huihuang Yan,Paul B. Talbert,Hye-Ran Lee,Jamie Jett,Steven Henikoff,Feng Chen,Jiming Jiang
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.0060286
Abstract: Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. Plant and animal centromeres are typically located in megabase-sized arrays of tandem satellite repeats, making their precise mapping difficult. However, some rice centromeres are largely embedded in nonsatellite DNA, providing an excellent model to study centromere structure and evolution. We used chromatin immunoprecipitation and 454 sequencing to define the boundaries of nine of the 12 centromeres of rice. Centromere regions from chromosomes 8 and 9 were found to share synteny, most likely reflecting an ancient genome duplication. For four centromeres, we mapped discrete subdomains of binding by the centromeric histone variant CENH3. These subdomains were depleted in both intact and nonfunctional genes relative to interspersed subdomains lacking CENH3. The intergenic location of rice centromeric chromatin resembles the situation for human neocentromeres and supports a model of the evolution of centromeres from gene-poor regions.
Intergenic Locations of Rice Centromeric Chromatin  [PDF]
Huihuang Yan,Paul B Talbert,Hye-Ran Lee,Jamie Jett,Steven Henikoff,Feng Chen ,Jiming Jiang
PLOS Biology , 2008, DOI: 10.1371/journal.pbio.0060286
Abstract: Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. Plant and animal centromeres are typically located in megabase-sized arrays of tandem satellite repeats, making their precise mapping difficult. However, some rice centromeres are largely embedded in nonsatellite DNA, providing an excellent model to study centromere structure and evolution. We used chromatin immunoprecipitation and 454 sequencing to define the boundaries of nine of the 12 centromeres of rice. Centromere regions from chromosomes 8 and 9 were found to share synteny, most likely reflecting an ancient genome duplication. For four centromeres, we mapped discrete subdomains of binding by the centromeric histone variant CENH3. These subdomains were depleted in both intact and nonfunctional genes relative to interspersed subdomains lacking CENH3. The intergenic location of rice centromeric chromatin resembles the situation for human neocentromeres and supports a model of the evolution of centromeres from gene-poor regions.
Tetrameric Structure of Centromeric Nucleosomes in Interphase Drosophila Cells  [PDF]
Yamini Dalal,Hongda Wang,Stuart Lindsay,Steven Henikoff
PLOS Biology , 2012, DOI: 10.1371/journal.pbio.0050218
Abstract: Centromeres, the specialized chromatin structures that are responsible for equal segregation of chromosomes at mitosis, are epigenetically maintained by a centromere-specific histone H3 variant (CenH3). However, the mechanistic basis for centromere maintenance is unknown. We investigated biochemical properties of CenH3 nucleosomes from Drosophila melanogaster cells. Cross-linking of CenH3 nucleosomes identifies heterotypic tetramers containing one copy of CenH3, H2A, H2B, and H4 each. Interphase CenH3 particles display a stable association of approximately 120 DNA base pairs. Purified centromeric nucleosomal arrays have typical “beads-on-a-string” appearance by electron microscopy but appear to resist condensation under physiological conditions. Atomic force microscopy reveals that native CenH3-containing nucleosomes are only half as high as canonical octameric nucleosomes are, confirming that the tetrameric structure detected by cross-linking comprises the entire interphase nucleosome particle. This demonstration of stable half-nucleosomes in vivo provides a possible basis for the instability of centromeric nucleosomes that are deposited in euchromatic regions, which might help maintain centromere identity.
Tetrameric Structure of Centromeric Nucleosomes in Interphase Drosophila Cells  [PDF]
Yamini Dalal,Hongda Wang,Stuart Lindsay,Steven Henikoff
PLOS Biology , 2007, DOI: 10.1371/journal.pbio.0050218
Abstract: Centromeres, the specialized chromatin structures that are responsible for equal segregation of chromosomes at mitosis, are epigenetically maintained by a centromere-specific histone H3 variant (CenH3). However, the mechanistic basis for centromere maintenance is unknown. We investigated biochemical properties of CenH3 nucleosomes from Drosophila melanogaster cells. Cross-linking of CenH3 nucleosomes identifies heterotypic tetramers containing one copy of CenH3, H2A, H2B, and H4 each. Interphase CenH3 particles display a stable association of approximately 120 DNA base pairs. Purified centromeric nucleosomal arrays have typical “beads-on-a-string” appearance by electron microscopy but appear to resist condensation under physiological conditions. Atomic force microscopy reveals that native CenH3-containing nucleosomes are only half as high as canonical octameric nucleosomes are, confirming that the tetrameric structure detected by cross-linking comprises the entire interphase nucleosome particle. This demonstration of stable half-nucleosomes in vivo provides a possible basis for the instability of centromeric nucleosomes that are deposited in euchromatic regions, which might help maintain centromere identity.
The Essential Role of Drosophila HIRA for De Novo Assembly of Paternal Chromatin at Fertilization  [PDF]
Emilie Bonnefoy equal contributor,Guillermo A Orsi equal contributor,Pierre Couble,Benjamin Loppin
PLOS Genetics , 2007, DOI: 10.1371/journal.pgen.0030182
Abstract: In many animal species, the sperm DNA is packaged with male germ line–specific chromosomal proteins, including protamines. At fertilization, these non-histone proteins are removed from the decondensing sperm nucleus and replaced with maternally provided histones to form the DNA replication competent male pronucleus. By studying a point mutant allele of the Drosophila Hira gene, we previously showed that HIRA, a conserved replication-independent chromatin assembly factor, was essential for the assembly of paternal chromatin at fertilization. HIRA permits the specific assembly of nucleosomes containing the histone H3.3 variant on the decondensing male pronucleus. We report here the analysis of a new mutant allele of Drosophila Hira that was generated by homologous recombination. Surprisingly, phenotypic analysis of this loss of function allele revealed that the only essential function of HIRA is the assembly of paternal chromatin during male pronucleus formation. This HIRA-dependent assembly of H3.3 nucleosomes on paternal DNA does not require the histone chaperone ASF1. Moreover, analysis of this mutant established that protamines are correctly removed at fertilization in the absence of HIRA, thus demonstrating that protamine removal and histone deposition are two functionally distinct processes. Finally, we showed that H3.3 deposition is apparently not affected in Hira mutant embryos and adults, suggesting that different chromatin assembly machineries could deposit this histone variant.
Human Condensin Function Is Essential for Centromeric Chromatin Assembly and Proper Sister Kinetochore Orientation  [PDF]
Alexander Samoshkin, Alexei Arnaoutov, Lars E. T. Jansen, Ilia Ouspenski, Louis Dye, Tatiana Karpova, James McNally, Mary Dasso, Don W. Cleveland, Alexander Strunnikov
PLOS ONE , 2009, DOI: 10.1371/journal.pone.0006831
Abstract: Condensins I and II in vertebrates are essential ATP-dependent complexes necessary for chromosome condensation in mitosis. Condensins depletion is known to perturb structure and function of centromeres, however the mechanism of this functional link remains elusive. Depletion of condensin activity is now shown to result in a significant loss of loading of CENP-A, the histone H3 variant found at active centromeres and the proposed epigenetic mark of centromere identity. Absence of condensins and/or CENP-A insufficiency produced a specific kinetochore defect, such that a functional mitotic checkpoint cannot prevent chromosome missegregation resulting from improper attachment of sister kinetochores to spindle microtubules. Spindle microtubule-dependent deformation of both inner kinetochores and the HEC1/Ndc80 microtubule-capturing module, then results in kinetochore separation from the Aurora B pool and ensuing reduced kinase activity at centromeres. Moreover, recovery from mitosis-inhibition by monastrol revealed a high incidence of merotelic attachment that was nearly identical with condensin depletion, Aurora B inactivation, or both, indicating that the Aurora B dysfunction is the key defect leading to chromosome missegregation in condensin-depleted cells. Thus, beyond a requirement for global chromosome condensation, condensins play a pivotal role in centromere assembly, proper spatial positioning of microtubule-capturing modules and positioning complexes of the inner centromere versus kinetochore plates.
Page 1 /100
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.