Search Results: 1 - 10 of 100 matches for " "
All listed articles are free for downloading (OA Articles)
Page 1 /100
Display every page Item
Involvement of TLR2 in Recognition of Acute Gammaherpesvirus-68 Infection  [PDF]
Fran?ois Michaud,Fran?ois Coulombe,éric Gaudreault,Jasna Kriz,Jean Gosselin
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0013742
Abstract: Toll-like receptors (TLRs) play a crucial role in the activation of innate immunity in response to many viruses. We previously reported the implication of TLR2 in the recognition of Epstein-Barr virus (EBV) by human monocytes. Because murine gammaherpesvirus-68 (MHV-68) is a useful model to study human gammaherpesvirus pathogenesis in vivo, we evaluated the importance of mouse TLR2 in the recognition of MHV-68.
Characterization of Epstein Barr Virus Latency Pattern in Argentine Breast Carcinoma  [PDF]
Mario A. Lorenzetti,Elena De Matteo,Hugo Gass,Paula Martinez Vazquez,Julia Lara,Pedro Gonzalez,María Victoria Preciado,Paola A. Chabay
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0013603
Abstract: Epstein-Barr virus (EBV)-associated tumors show different expression patterns of latency genes. Since in breast carcinoma this pattern is not yet fully described, our aim was to characterize EBV latency pattern in our EBV positive breast carcinoma series.
Inhibition of NF-κB Activation In Vivo Impairs Establishment of Gammaherpesvirus Latency  [PDF]
Laurie T Krug,Janice M Moser,Shelley M Dickerson,Samuel H Speck
PLOS Pathogens , 2007, DOI: 10.1371/journal.ppat.0030011
Abstract: A critical determinant in chronic gammaherpesvirus infections is the ability of these viruses to establish latency in a lymphocyte reservoir. The nuclear factor (NF)-κB family of transcription factors represent key players in B-cell biology and are targeted by gammaherpesviruses to promote host cell survival, proliferation, and transformation. However, the role of NF-κB signaling in the establishment of latency in vivo has not been addressed. Here we report the generation and in vivo characterization of a recombinant murine gammaherpesvirus 68 (γHV68) that expresses a constitutively active form of the NF-κB inhibitor, IκBαM. Inhibition of NF-κB signaling upon infection with γHV68-IκBαM did not affect lytic replication in cell culture or in the lung following intranasal inoculation. However, there was a substantial decrease in the frequency of latently infected lymphocytes in the lung (90% reduction) and spleens (97% reduction) 16 d post intranasal inoculation. Importantly, the defect in establishment of latency in lung B cells could not be overcome by increasing the dose of virus 100-fold. The observed decrease in establishment of viral latency correlated with a loss of activated, CD69hi B cells in both the lungs and spleen at day 16 postinfection, which was not apparent by 6 wk postinfection. Constitutive expression of Bcl-2 in B cells did not rescue the defect in the establishment of latency observed with γHV68-IκBαM, indicating that NF-κB–mediated functions apart from Bcl-2–mediated B-cell survival are critical for the efficient establishment of gammaherpesvirus latency in vivo. In contrast to the results obtained following intranasal inoculation, infection of mice with γHV68-IκBαM by the intraperitoneal route had only a modest impact on splenic latency, suggesting that route of inoculation may alter requirements for establishment of virus latency in B cells. Finally, analyses of the pathogenesis of γHV68-IκBαM provides evidence that NF-κB signaling plays an important role during multiple stages of γHV68 infection in vivo and, as such, represents a key host regulatory pathway that is likely manipulated by the virus to establish latency in B cells.
Murine gammaherpesvirus 68 glycoprotein 150 does not contribute to latency amplification in vivo
Romana Ruiss, Shinji Ohno, Beatrix Steer, Reinhard Zeidler, Heiko Adler
Virology Journal , 2012, DOI: 10.1186/1743-422x-9-107
Abstract: To further develop MHV-68 as model to study the function of gammaherpesvirus glycoproteins in vivo, it is important to know whether gp150 contributes to latency amplification or not. Thus, we re-evaluated this question by testing a number of gp150 mutants side by side. Our results suggest that gp150 is dispensable for latency amplification. Furthermore, we investigated the effect of vaccination with gp150 using gp150-containing exosomes. Vaccination with gp150 induced a strong humoral and cellular immune response, yet it did not affect a subsequent MHV-68 challenge infection.In this study, we found no evidence for a role of gp150 in latency amplification. The previously observed contradictory results on the role of gp150 in latency amplification were not related to differences between the mutant viruses which had been used.
Global mRNA Degradation during Lytic Gammaherpesvirus Infection Contributes to Establishment of Viral Latency  [PDF]
Justin M. Richner,Karen Clyde,Andrea C. Pezda,Benson Yee Hin Cheng,Tina Wang,G. Renuka Kumar,Sergio Covarrubias,Laurent Coscoy,Britt Glaunsinger
PLOS Pathogens , 2011, DOI: 10.1371/journal.ppat.1002150
Abstract: During a lytic gammaherpesvirus infection, host gene expression is severely restricted by the global degradation and altered 3′ end processing of mRNA. This host shutoff phenotype is orchestrated by the viral SOX protein, yet its functional significance to the viral lifecycle has not been elucidated, in part due to the multifunctional nature of SOX. Using an unbiased mutagenesis screen of the murine gammaherpesvirus 68 (MHV68) SOX homolog, we isolated a single amino acid point mutant that is selectively defective in host shutoff activity. Incorporation of this mutation into MHV68 yielded a virus with significantly reduced capacity for mRNA turnover. Unexpectedly, the MHV68 mutant showed little defect during the acute replication phase in the mouse lung. Instead, the virus exhibited attenuation at later stages of in vivo infections suggestive of defects in both trafficking and latency establishment. Specifically, mice intranasally infected with the host shutoff mutant accumulated to lower levels at 10 days post infection in the lymph nodes, failed to develop splenomegaly, and exhibited reduced viral DNA levels and a lower frequency of latently infected splenocytes. Decreased latency establishment was also observed upon infection via the intraperitoneal route. These results highlight for the first time the importance of global mRNA degradation during a gammaherpesvirus infection and link an exclusively lytic phenomenon with downstream latency establishment.
Expansion of Murine Gammaherpesvirus Latently Infected B Cells Requires T Follicular Help  [PDF]
Christopher M. Collins,Samuel H. Speck
PLOS Pathogens , 2014, DOI: doi/10.1371/journal.ppat.1004106
Abstract: X linked lymphoproliferative disease (XLP) is an inherited immunodeficiency resulting from mutations in the gene encoding the slam associated protein (SAP). One of the defining characteristics of XLP is extreme susceptibility to infection with Epstein-Barr virus (EBV), a gammaherpesvirus belonging to the genus Lymphocryptovirus, often resulting in fatal infectious mononucleosis (FIM). However, infection of SAP deficient mice with the related Murine gammaherpesvirus 68 (MHV68), a gammaherpesvirus in the genus Rhadinovirus, does not recapitulate XLP. Here we show that MHV68 inefficiently establishes latency in B cells in SAP deficient mice due to insufficient CD4 T cell help during the germinal center response. Although MHV68 infected B cells can be found in SAP-deficient mice, significantly fewer of these cells had a germinal center phenotype compared to SAP-sufficient mice. Furthermore, we show that infected germinal center B cells in SAP-deficient mice fail to proliferate. This failure to proliferate resulted in significantly lower viral loads, and likely accounts for the inability of MHV68 to induce a FIM-like syndrome. Finally, inhibiting differentiation of T follicular helper (TFH) cells in SAP-sufficient C57Bl/6 mice resulted in decreased B cell latency, and the magnitude of the TFH response directly correlated with the level of infection in B cells. This requirement for CD4 T cell help during the germinal center reaction by MHV68 is in contrast with EBV, which is thought to be capable of bypassing this requirement by expressing viral proteins that mimic signals provided by TFH cells. In conclusion, the outcome of MHV68 infection in mice in the setting of loss of SAP function is distinct from that observed in SAP-deficient patients infected with EBV, and may identify a fundamental difference between the strategies employed by the rhadinoviruses and lymphocryptoviruses to expand B cell latency during the early phase of infection.
Interleukin 21 Signaling in B Cells Is Required for Efficient Establishment of Murine Gammaherpesvirus Latency  [PDF]
Christopher M. Collins?,Samuel H. Speck
PLOS Pathogens , 2015, DOI: 10.1371/journal.ppat.1004831
Abstract: The human gammaherpesviruses take advantage of normal B cell differentiation pathways to establish life-long infection in memory B cells. Murine gammaherpesvirus 68 (MHV68) infection of laboratory strains of mice also leads to life-long infection in memory B cells. To gain access to the memory B cell population, MHV68 infected B cells pass through the germinal center reaction during the onset of latency and require signals from T follicular helper (TFH) cells for proliferation. Interleukin 21 (IL-21), one of the secreted factors produced by TFH cells, plays an important role in both the maintenance of the germinal center response as well as in the generation of long-lived plasma cells. Using IL-21R deficient mice, we show that IL-21 signaling is required for efficient establishment of MHV68 infection. In the absence of IL-21 signaling, fewer infected splenocytes are able to gain access to either the germinal center B cell population or the plasma cell population – the latter being a major site of MHV68 reactivation. Furthermore, the germinal center B cell population in IL-21R-/- mice is skewed towards the non-proliferating centrocyte phenotype, resulting in reduced expansion of infected B cells. Additionally, the reduced frequency of infected plasma cells results in a significant reduction in the frequency of splenocytes capable of reactivating virus. This defect in establishment of MHV68 infection is intrinsic to B cells, as MHV68 preferentially establishes infection in IL-21R sufficient B cells in mixed bone marrow chimeric mice. Taken together, these data indicate that IL-21 signaling plays multiple roles during establishment of MHV68 infection, and identify IL-21 as a critical TFH cell-derived factor for efficient establishment of gammaherpesvirus B cell latency.
A Gammaherpesvirus Cooperates with Interferon-alpha/beta-Induced IRF2 to Halt Viral Replication, Control Reactivation, and Minimize Host Lethality  [PDF]
Pratyusha Mandal,Bridgette E. Krueger,Darby Oldenburg,Katherine A. Andry,R. Suzanne Beard,Douglas W. White,Erik S. Barton
PLOS Pathogens , 2011, DOI: 10.1371/journal.ppat.1002371
Abstract: The gammaherpesviruses, including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), establish latency in memory B lymphocytes and promote lymphoproliferative disease in immunocompromised individuals. The precise immune mechanisms that prevent gammaherpesvirus reactivation and tumorigenesis are poorly defined. Murine gammaherpesvirus 68 (MHV68) is closely related to EBV and KSHV, and type I (alpha/beta) interferons (IFNαβ) regulate MHV68 reactivation from both B cells and macrophages by unknown mechanisms. Here we demonstrate that IFNβ is highly upregulated during latent infection, in the absence of detectable MHV68 replication. We identify an interferon-stimulated response element (ISRE) in the MHV68 M2 gene promoter that is bound by the IFNαβ-induced transcriptional repressor IRF2 during latency in vivo. The M2 protein regulates B cell signaling to promote establishment of latency and reactivation. Virus lacking the M2 ISRE (ISREΔ) overexpresses M2 mRNA and displays uncontrolled acute replication in vivo, higher latent viral load, and aberrantly high reactivation from latency. These phenotypes of the ISREΔ mutant are B-cell-specific, require IRF2, and correlate with a significant increase in virulence in a model of acute viral pneumonia. We therefore identify a mechanism by which a gammaherpesvirus subverts host IFNαβ signaling in a surprisingly cooperative manner, to directly repress viral replication and reactivation and enforce latency, thereby minimizing acute host disease. Since we find ISREs 5′ to the major lymphocyte latency genes of multiple rodent, primate, and human gammaherpesviruses, we propose that cooperative subversion of IFNαβ-induced IRFs to promote latent infection is an ancient strategy that ensures a stable, minimally-pathogenic virus-host relationship.
Illumination of Murine Gammaherpesvirus-68 Cycle Reveals a Sexual Transmission Route from Females to Males in Laboratory Mice  [PDF]
Sylvie Fran?ois,Sarah Vidick,Micka?l Sarlet,Daniel Desmecht,Pierre Drion,Philip G. Stevenson,Alain Vanderplasschen,Laurent Gillet
PLOS Pathogens , 2013, DOI: 10.1371/journal.ppat.1003292
Abstract: Transmission is a matter of life or death for pathogen lineages and can therefore be considered as the main motor of their evolution. Gammaherpesviruses are archetypal pathogenic persistent viruses which have evolved to be transmitted in presence of specific immune response. Identifying their mode of transmission and their mechanisms of immune evasion is therefore essential to develop prophylactic and therapeutic strategies against these infections. As the known human gammaherpesviruses, Epstein-Barr virus and Kaposi's Sarcoma-associated Herpesvirus are host-specific and lack a convenient in vivo infection model; related animal gammaherpesviruses, such as murine gammaherpesvirus-68 (MHV-68), are commonly used as general models of gammaherpesvirus infections in vivo. To date, it has however never been possible to monitor viral excretion or virus transmission of MHV-68 in laboratory mice population. In this study, we have used MHV-68 associated with global luciferase imaging to investigate potential excretion sites of this virus in laboratory mice. This allowed us to identify a genital excretion site of MHV-68 following intranasal infection and latency establishment in female mice. This excretion occurred at the external border of the vagina and was dependent on the presence of estrogens. However, MHV-68 vaginal excretion was not associated with vertical transmission to the litter or with horizontal transmission to female mice. In contrast, we observed efficient virus transmission to na?ve males after sexual contact. In vivo imaging allowed us to show that MHV-68 firstly replicated in penis epithelium and corpus cavernosum before spreading to draining lymph nodes and spleen. All together, those results revealed the first experimental transmission model for MHV-68 in laboratory mice. In the future, this model could help us to better understand the biology of gammaherpesviruses and could also allow the development of strategies that could prevent the spread of these viruses in natural populations.
Gammaherpesvirus Co-infection with Malaria Suppresses Anti-parasitic Humoral Immunity  [PDF]
Caline G. Matar?,Neil R. Anthony?,Brigid M. O’Flaherty?,Nathan T. Jacobs?,Lalita Priyamvada?,Christian R. Engwerda?,Samuel H. Speck?,Tracey J. Lamb
PLOS Pathogens , 2015, DOI: 10.1371/journal.ppat.1004858
Abstract: Immunity to non-cerebral severe malaria is estimated to occur within 1-2 infections in areas of endemic transmission for Plasmodium falciparum. Yet, nearly 20% of infected children die annually as a result of severe malaria. Multiple risk factors are postulated to exacerbate malarial disease, one being co-infections with other pathogens. Children living in Sub-Saharan Africa are seropositive for Epstein Barr Virus (EBV) by the age of 6 months. This timing overlaps with the waning of protective maternal antibodies and susceptibility to primary Plasmodium infection. However, the impact of acute EBV infection on the generation of anti-malarial immunity is unknown. Using well established mouse models of infection, we show here that acute, but not latent murine gammaherpesvirus 68 (MHV68) infection suppresses the anti-malarial humoral response to a secondary malaria infection. Importantly, this resulted in the transformation of a non-lethal P. yoelii XNL infection into a lethal one; an outcome that is correlated with a defect in the maintenance of germinal center B cells and T follicular helper (Tfh) cells in the spleen. Furthermore, we have identified the MHV68 M2 protein as an important virus encoded protein that can: (i) suppress anti-MHV68 humoral responses during acute MHV68 infection; and (ii) plays a critical role in the observed suppression of anti-malarial humoral responses in the setting of co-infection. Notably, co-infection with an M2-null mutant MHV68 eliminates lethality of P. yoelii XNL. Collectively, our data demonstrates that an acute gammaherpesvirus infection can negatively impact the development of an anti-malarial immune response. This suggests that acute infection with EBV should be investigated as a risk factor for non-cerebral severe malaria in young children living in areas endemic for Plasmodium transmission.
Page 1 /100
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.