Article citations

    [10]YU G, CHEW K W, SUN Z C, et al. A 400 nW single??inductor dual??input??tri??output DC??DC buck??boost converter with maximum power point tracking for indoor photovoltaic energy harvesting [J]. IEEE Journal of Solid??State Circuits, 2015, 50(11): 2758??2772.

has been cited by the following article:

  • TITLE: 采用峰值电感电流控制的直流-直流电压转换器<br>A DC??DC Converter Based on Inductor??Peak??Current Control
  • AUTHORS: 熊齐,李尊朝,焦琛,周律忱
  • KEYWORDS: 升压?步笛剐妥?换器,单电感多输入多输出,峰值电感电流,脉冲频率调制<br>buck??boost converter,single??inductor multi??input??multi??output,inductor??peak??current,pulse??frequency modulation
  • JOURNAL NAME: - DOI: 10.7652/xjtuxb201812019 Jun 16, 2019
  • ABSTRACT: 针对可穿戴设备需要小型化和适应各种应用场景要求的问题,提出了一种单电感多输入多输出的升压?步笛剐?DC??DC转换器,以采集多种能量为可穿戴设备供电。由于转换器既需要高的效率,又需要稳定的负载电压,提出了结合峰值电感电流控制策略和基于阈值变频策略的峰值电感电流脉冲频率调制技术。峰值电感电流脉冲频率调制技术根据各输入输出端口状态来改变能量传输频率,从而实现各能量源最大功率点追踪和负载端电压的调制;同时,通过控制每次能量传递时流过电感的峰值电流大小,提高转换效率并降低输出电压纹波。此外,采用两种低功耗控制策略以降低控制电路功耗:使用低供电电压为控制电路供电;令部分控制电路断续工作。采用华润上华CMOS 0.18 μm工艺完成了转换器电路及版图设计,并进行了仿真验证。后仿真结果表明,在0.2~3 V输入电压范围和0.001~3 mW负载范围内,转换器效率能够保持在73.8%以上,控制电路功耗小于300 nW。<br>A single??inductor multi??input??multi??output buck??boost DC??DC converter is designed for multi??source energy harvesting according to wearable devices’ demand for miniaturization and adaption to different environments. To achieve high efficiency and stable voltage for the load, inductor??peak??current pulse??frequency modulation technology is proposed to control the converter via combining inductor??peak??current control (IPCC) strategy and the threshold??based variable??frequency (TBVF) strategy. The inductor??peak??current pulse??frequency modulation technology changes the frequency of the energy transformation according to the states of inputs and outputs to implement the maximum power point tracking and to regulate the output voltage. At the same time, it controls the peak current of the inductor to improve the efficiency and to decrease the output voltage ripple. Furthermore, two kinds of low power control strategies are implemented to reduce the power consumption of the control circuits: adopting low voltage control circuit and discontinuously working circuit modules. Finally, the converter circuit and layout are designed and verified in the CSMC 0.18 μm process. Simulation results after layout parasitic extraction show that the efficiency of the converter is above 73.8% under the input voltage from 0.2 V to 3 V with load varying from 0.001 to 3 mW and the power consumption of control circuits is less than 300 nW