Article citations

    Luo, M.Z., Yang, Z.Q., Li, J.B., Xu, H.Y., Li, S.S., Zhang, W., Qian, A.R. and Shang, P. (2013) Calcium Influx through Stretch-Activated Channels Mediates Microfilament Reorganization in Osteoblasts under Simulated Weightlessness. Advances in Space Research, 51, 2058-2068.

has been cited by the following article:

  • TITLE: The Distribution and Morphology Alterations of Microfilaments and Microtubules in Mesophyll Cells and Root-Tip Cells of Wheat Seedlings under Enhanced Ultraviolet-B Radiation
  • AUTHORS: Limei Gao, Yongfeng Li, Aihua Guo, Jingru Zhai, Rong Han
  • KEYWORDS: Wheat, Microfilament, Microtubule, Enhanced UV-B Radiation, Confocal Laser Scanning Microscope
  • JOURNAL NAME: American Journal of Plant Sciences DOI: 10.4236/ajps.2014.522358 Nov 26, 2014
  • ABSTRACT: The distribution and morphology alterations of microfilaments and microtubules in the mesophyll cells and root-tip cells of wheat seedlings, which had been radiated by enhanced ultraviolet-B (10.08 KJ·m-2·d-1), were examined through the confocal laser scanning microscope (Model FV1000, Olympus, Japan). Microtubule was labeled with an indirect immunofluorescence staining method, and microfilament was labeled with fluorescein isothiocyanate-phalloidin (FITC-Ph) as probes. The results indicated that microtubules in mesophyll cells, compared with the controls, would be depolymerized significantly, and dispersed randomly showing some spots or short rods in the cytoplasm, under the enhanced UV-B radiation condition. The microtubule bundles tended to be diffused, and the fluorescence intensity of that significantly decreased. The distribution pattern of microfilaments, which usually arranged parallelly in control cells, was broken up by enhanced UV-B radiation. We further investigated the distribution and morphology of microtubules in root-tip cells during every stage of cell division, and found that these aberrant phenomena of microtubules were often associated with abnormal cell division. Our findings suggested that the distribution, morphology and structure of cytoskeleton in mesophyll cells and root-tip cells of wheat seedlings would be affected by enhanced UV-B radiation, which might be related to abnormal cell division caused by enhanced UV-B radiation as an extracellular signal.