Article citations

    M. M. Cowan, “Plant products as antimicrobial agents,” Clinical Microbiology Reviews, vol. 12, no. 4, pp. 564–582, 1999.

has been cited by the following article:

  • TITLE: Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria
  • AUTHORS: Bipul Biswas,Kimberly Rogers,Fredrick McLaughlin,Dwayne Daniels,Anand Yadav
  • JOURNAL NAME: International Journal of Microbiology DOI: 10.1155/2013/746165 Sep 16, 2014
  • ABSTRACT: Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50?μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3?mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0?mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. 1. Introduction Recently there has been a lot of attention focused on producing medicines and products that are natural. Several fruits and fruit extracts, as well as arrowroot tea extract [1] and caffeine [2], have been found to exhibit antimicrobial activity against E. coli O157:H7. This suggests that plants which manifest relatively high levels of antimicrobial action may be sources of compounds that can be used to inhibit the growth of foodborne pathogens. Bacterial cells could be killed by the rupture of cell walls and membranes and by the irregular disruption of the intracellular matrix when treated with plant extracts [1]. The guava (Psidium guajava) is a phytotherapic plant used in folk medicine that is believed to have active components that help to treat and manage various diseases. The many parts of the plant have been used in traditional medicine to manage conditions like malaria, gastroenteritis, vomiting, diarrhea, dysentery, wounds, ulcers, toothache, coughs, sore throat, inflamed gums, and a number of other conditions [3–5]. This plant has also been used for the controlling of life-changing conditions such as diabetes, hypertension, and obesity [3, 6–10]. In this study, we aim to evaluate the total extracts of P. guajava leaves, growing at Fort Valley State