Article citations

    Y. Chenoune, E. Deléchelle, E. Petit, T. Goissen, J. Garot, and A. Rahmouni, “Segmentation of cardiac cine-MR images and myocardial deformation assessment using level set methods,” Computerized Medical Imaging and Graphics, vol. 29, no. 8, pp. 607–616, 2005.

has been cited by the following article:

  • TITLE: Composite Match Index with Application of Interior Deformation Field Measurement from Magnetic Resonance Volumetric Images of Human Tissues
  • AUTHORS: Penglin Zhang,Xubing Zhang,Jiangping Chen
  • JOURNAL NAME: Computational Intelligence and Neuroscience DOI: 10.1155/2012/135204 Sep 16, 2014
  • ABSTRACT: Whereas a variety of different feature-point matching approaches have been reported in computer vision, few feature-point matching approaches employed in images from nonrigid, nonuniform human tissues have been reported. The present work is concerned with interior deformation field measurement of complex human tissues from three-dimensional magnetic resonance (MR) volumetric images. To improve the reliability of matching results, this paper proposes composite match index (CMI) as the foundation of multimethod fusion methods to increase the reliability of these various methods. Thereinto, we discuss the definition, components, and weight determination of CMI. To test the validity of the proposed approach, it is applied to actual MR volumetric images obtained from a volunteer’s calf. The main result is consistent with the actual condition. 1. Introduction The physical property is the base of the biological simulation, computer-assisted medical applications, such as clinical diagnosis, and surgical simulation, surgical planning. And estimation of internal deformation field or deformation motion for the biological tissues plays a very significant role in physical parameters estimation. Thus, measuring the internal deformation field of biological tissues is becoming the focus research. Magnetic resonance (MR) imaging (MRI) provides superb anatomic images with excellent spatial resolution and contrasts among soft tissues; thus, it is widely used in computer-assisted medical applications, such as clinical diagnosis, surgery simulation, operation planning, and evaluation of physical characteristics of biological tissues. Increasing number of researchers in medical simulation and medical virtual reality focus on the interior deformation field or motion measurement of biological tissues from MR volumetric images, and it has become one of the significant branches of medical image analysis. Generally, approaches for estimating the deformation of MR volumetric images can be classified into two typical types: elastic deformation model-based and feature matching-based methods. The elastic deformation model-based method can be classified into either parametric or geometric active models [1]. To obtain the deformation information of an object, the parametric active contours, also called snakes, try to minimize a defined cost function so that the function deforms a given initial contour toward the boundary of the object. This method was first introduced by Kass et al. in 1987 [2] and subsequently developed and used by Lang et al. [3], Cho and Benkeser [4], and