文章

    S. Witham, K. Takano, C. Schwartz, and E. Alexov, “A missense mutation in CLIC2 associated with intellectual disability is predicted by in silico modeling to affect protein stability and dynamics,” Proteins: Structure, Function and Bioinformatics, vol. 79, no. 8, pp. 2444–2454, 2011.

被如下文章引用:

  • TITLE: Advances in Human Biology: Combining Genetics and Molecular Biophysics to Pave the Way for Personalized Diagnostics and Medicine
  • AUTHORS: Emil Alexov
  • JOURNAL NAME: Advances in Biology DOI: 10.1155/2014/471836 Sep 16, 2014
  • ABSTRACT: Advances in several biology-oriented initiatives such as genome sequencing and structural genomics, along with the progress made through traditional biological and biochemical research, have opened up a unique opportunity to better understand the molecular effects of human diseases. Human DNA can vary significantly from person to person and determines an individual’s physical characteristics and their susceptibility to diseases. Armed with an individual’s DNA sequence, researchers and physicians can check for defects known to be associated with certain diseases by utilizing various databases. However, for unclassified DNA mutations or in order to reveal molecular mechanism behind the effects, the mutations have to be mapped onto the corresponding networks and macromolecular structures and then analyzed to reveal their effect on the wild type properties of biological processes involved. Predicting the effect of DNA mutations on individual’s health is typically referred to as personalized or companion diagnostics. Furthermore, once the molecular mechanism of the mutations is revealed, the patient should be given drugs which are the most appropriate for the individual genome, referred to as pharmacogenomics. Altogether, the shift in focus in medicine towards more genomic-oriented practices is the foundation of personalized medicine. The progress made in these rapidly developing fields is outlined. 1. Introduction The human body is a delicate, self-regulating machine which can respond to its surroundings and internal needs. Such self-regulation involves various processes ranging from processes on atomic and molecular level to processes occurring in organs and tissues. Despite such tremendous complexity, somehow all humans, broadly speaking, are quite similar. However, slight differences in DNA can lead to a multitude of other physical differences. Some of these differences are harmless such as eye and hair color [1], race [2], and skin color [3, 4], while other differences may be disease-associated (see special J. Mol. Biol. issue [5]). The differences among individuals and their susceptibility to diseases are not only due to the single nucleoside polymorphisms (SNPs), but also due to the fact that different individuals have different copy numbers variations (CNVs) for various genes [6–9]. As pointed out by Haraksingh and Snyder [6], the CNVs are perhaps even more important for the humans than the SNPs, a statement supported by other researchers [10–13]. In the end, from the viewpoint of personalized diagnostics and medicine, the most important task is to