Article citations

    Nijhawan R, Kirschfeld K (2003) Analogous mechanisms compensate for neural delays in the sensory and the motor pathways: evidence from motor flash-lag. Current Biology 13: 749–753.

has been cited by the following article:

  • TITLE: Motion Extrapolation in the Central Fovea
  • AUTHORS: Zhuanghua Shi, Romi Nijhawan
  • JOURNAL NAME: PLOS ONE DOI: 10.1371/journal.pone.0033651 Sep 11, 2014
  • ABSTRACT: Neural transmission latency would introduce a spatial lag when an object moves across the visual field, if the latency was not compensated. A visual predictive mechanism has been proposed, which overcomes such spatial lag by extrapolating the position of the moving object forward. However, a forward position shift is often absent if the object abruptly stops moving (motion-termination). A recent “correction-for-extrapolation” hypothesis suggests that the absence of forward shifts is caused by sensory signals representing ‘failed’ predictions. Thus far, this hypothesis has been tested only for extra-foveal retinal locations. We tested this hypothesis using two foveal scotomas: scotoma to dim light and scotoma to blue light. We found that the perceived position of a dim dot is extrapolated into the fovea during motion-termination. Next, we compared the perceived position shifts of a blue versus a green moving dot. As predicted the extrapolation at motion-termination was only found with the blue moving dot. The results provide new evidence for the correction-for-extrapolation hypothesis for the region with highest spatial acuity, the fovea.