Article citations

    Spratlin JL, Serkova NJ, Eckhardt SG (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15: 431–440.

has been cited by the following article:

  • TITLE: Gender-Specific Metabolomic Profiling of Obesity in Leptin-Deficient ob/ob Mice by 1H NMR Spectroscopy
  • AUTHORS: Eun-Young Won, Mi-Kyung Yoon, Sang-Woo Kim, Youngae Jung, Hyun-Whee Bae, Daeyoup Lee, Sung Goo Park, Chul-Ho Lee, Geum-Sook Hwang, Seung-Wook Chi
  • JOURNAL NAME: PLOS ONE DOI: 10.1371/journal.pone.0075998 Sep 09, 2014
  • ABSTRACT: Despite the numerous metabolic studies on obesity, gender bias in obesity has rarely been investigated. Here, we report the metabolomic analysis of obesity by using leptin-deficient ob/ob mice based on the gender. Metabolomic analyses of urine and serum from ob/ob mice compared with those from C57BL/6J lean mice, based on the 1H NMR spectroscopy in combination with multivariate statistical analysis, revealed clear metabolic differences between obese and lean mice. We also identified 48 urine and 22 serum metabolites that were statistically significantly altered in obese mice compared to lean controls. These metabolites are involved in amino acid metabolism (leucine, alanine, ariginine, lysine, and methionine), tricarbocylic acid cycle and glucose metabolism (pyruvate, citrate, glycolate, acetoacetate, and acetone), lipid metabolism (cholesterol and carnitine), creatine metabolism (creatine and creatinine), and gut-microbiome-derived metabolism (choline, TMAO, hippurate, p-cresol, isobutyrate, 2-hydroxyisobutyrate, methylamine, and trigonelline). Notably, our metabolomic studies showed distinct gender variations. The obese male mice metabolism was specifically associated with insulin signaling, whereas the obese female mice metabolism was associated with lipid metabolism. Taken together, our study identifies the biomarker signature for obesity in ob/ob mice and provides biochemical insights into the metabolic alteration in obesity based on gender.