%PDF-1.7
%
1 0 obj
<>/Metadata 2 0 R/Outlines 5 0 R/OutputIntents 6 0 R/PageLayout/OneColumn/Pages 3 0 R/StructTreeRoot 7 0 R/Type/Catalog>>
endobj
2 0 obj
<>stream
2025-04-21T14:18:17+08:00
2025-04-21T14:18:05+08:00
2025-04-21T14:18:17+08:00
Acrobat PDFMaker 22 Word 版
uuid:d20e4024-a347-46c7-a877-28ea37cead49
uuid:f4c5224c-75dd-42f1-8b46-3e102383e92a
application/pdf
AI-Driven Mental Disorder Prediction: A Machine Learning Approach for Early Detection
Mental disorders, including depression, bipolar disorder, and mood disorders, affect millions of individuals worldwide, significantly impacting their quality of life. Early and accurate diagnosis is essential for effective intervention, re-ducing the burden on healthcare systems, and improving patient outcomes. However, traditional diagnostic methods rely heavily on subjective assess-ments, self-reported symptoms, and clinical observations, which may lead to delays and inconsistencies in diagnosis. The integration of artificial intelli-gence (AI) and machine learning (ML) in mental health care has emerged as a promising solution to enhance predictive accuracy and provide early diagno-sis. This study explores the application of ML algorithms to predict mental disorders using behavioral and psychological features. The dataset comprises attributes such as sadness, sleep disorders, mood swings, anxiety levels, and suicidal thoughts. We employ supervised learning techniques, including Deci-sion Trees, Random Forest, Support Vector Machines (SVM), and Neural Networks, to classify individuals into four categories: Bipolar Type-1, Bipolar Type-2, Depression, and Normal. The dataset is pre-processed through feature selection, normalization, and handling missing values to improve model per-formance. Our experimental results demonstrate that AI-driven predictive models achieve high accuracy in identifying mental health conditions, with certain models outperforming traditional diagnostic approaches. The findings suggest that AI can significantly contribute to mental health assessment, providing a non-invasive and scalable solution for early detection. By integrat-ing such models into digital health platforms, AI can assist mental health pro-fessionals in making informed decisions and offering timely interventions. Future research should focus on expanding datasets, incorporating multimodal data, and refining models to enhance generalizability across diverse popula-tions. AI-driven mental healthcare solutions hold immense potential to revolu-tionize psychiatric diagnosis and personalized treatment planning.
Rocco de Filippis, Abdullah Al Foysal
Adobe PDF Library 22.1.117
Mental Disorder Prediction, Machine Learning in Healthcare, Artificial Intelligence in Psychiatry, Early Detection of Mental Illnesses, AI-Driven Diagnosis, Predictive Modelling for Mental Health
2
A
http://ns.adobe.com/pdf/1.3/
pdf
Adobe PDF Schema
internal
A name object indicating whether the document has been modified to include trapping information
Trapped
Text
http://ns.adobe.com/xap/1.0/mm/
xmpMM
XMP Media Management Schema
internal
UUID based identifier for specific incarnation of a document
InstanceID
URI
internal
The common identifier for all versions and renditions of a document.
OriginalDocumentID
URI
http://www.aiim.org/pdfa/ns/id/
pdfaid
PDF/A ID Schema
internal
Part of PDF/A standard
part
Integer
internal
Amendment of PDF/A standard
amd
Text
internal
Conformance level of PDF/A standard
conformance
Text
endstream
endobj
5 0 obj
<>
endobj
6 0 obj
[<>]
endobj
3 0 obj
<>
endobj
7 0 obj
<>
endobj
14 0 obj
<>
endobj
15 0 obj
<>
endobj
16 0 obj
<>
endobj
150 0 obj
<>
endobj
151 0 obj
<>
endobj
152 0 obj
<>
endobj
153 0 obj
<>
endobj
248 0 obj
<>]/Lang(EN-US)/P 283 0 R/Pg 284 0 R/S/Link/Type/StructElem>>
endobj
249 0 obj
<>]/Lang(EN-US)/P 116 0 R/Pg 284 0 R/S/Link/Type/StructElem>>
endobj
250 0 obj
<>]/Lang(EN-US)/P 117 0 R/Pg 284 0 R/S/Link/Type/StructElem>>
endobj
251 0 obj
<>]/Lang(EN-US)/P 118 0 R/Pg 284 0 R/S/Link/Type/StructElem>>
endobj
252 0 obj
<>]/Lang(EN-US)/P 120 0 R/Pg 284 0 R/S/Link/Type/StructElem>>
endobj
253 0 obj
<>]/Lang(EN-US)/P 121 0 R/Pg 284 0 R/S/Link/Type/StructElem>>
endobj
254 0 obj
<>]/Lang(EN-US)/P 122 0 R/Pg 284 0 R/S/Link/Type/StructElem>>
endobj
255 0 obj
<>]/Lang(EN-US)/P 123 0 R/Pg 284 0 R/S/Link/Type/StructElem>>
endobj
256 0 obj
<>]/Lang(EN-US)/P 124 0 R/Pg 284 0 R/S/Link/Type/StructElem>>
endobj
257 0 obj
<>]/Lang(EN-US)/P 125 0 R/Pg 284 0 R/S/Link/Type/StructElem>>
endobj
258 0 obj
<>]/Lang(EN-US)/P 126 0 R/Pg 284 0 R/S/Link/Type/StructElem>>
endobj
259 0 obj
<>]/Lang(EN-US)/P 127 0 R/Pg 284 0 R/S/Link/Type/StructElem>>
endobj
260 0 obj
[null 261 0 R 128 0 R 296 0 R null 129 0 R 262 0 R 129 0 R 297 0 R null 130 0 R 263 0 R 130 0 R 298 0 R null 131 0 R 264 0 R 131 0 R 299 0 R null 132 0 R 265 0 R 132 0 R 300 0 R null 133 0 R 266 0 R 133 0 R 301 0 R null 134 0 R 267 0 R 134 0 R 302 0 R null 135 0 R 268 0 R 135 0 R 303 0 R null 136 0 R 269 0 R 136 0 R 304 0 R null 137 0 R 270 0 R 137 0 R 305 0 R null 138 0 R 271 0 R 138 0 R 306 0 R null 139 0 R 272 0 R 139 0 R 307 0 R null 140 0 R 273 0 R 140 0 R 308 0 R null 141 0 R 274 0 R 141 0 R 309 0 R null 142 0 R 275 0 R 142 0 R 310 0 R null 143 0 R]
endobj
261 0 obj
<>]/Lang(EN-US)/P 128 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
262 0 obj
<>]/Lang(EN-US)/P 129 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
263 0 obj
<>]/Lang(EN-US)/P 130 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
264 0 obj
<>]/Lang(EN-US)/P 131 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
265 0 obj
<>]/Lang(EN-US)/P 132 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
266 0 obj
<>]/Lang(EN-US)/P 133 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
267 0 obj
<>]/Lang(EN-US)/P 134 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
268 0 obj
<>]/Lang(EN-US)/P 135 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
269 0 obj
<>]/Lang(EN-US)/P 136 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
270 0 obj
<>]/Lang(EN-US)/P 137 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
271 0 obj
<>]/Lang(EN-US)/P 138 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
272 0 obj
<>]/Lang(EN-US)/P 139 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
273 0 obj
<>]/Lang(EN-US)/P 140 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
274 0 obj
<>]/Lang(EN-US)/P 141 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
275 0 obj
<>]/Lang(EN-US)/P 142 0 R/Pg 312 0 R/S/Link/Type/StructElem>>
endobj
276 0 obj
[143 0 R 277 0 R 327 0 R 328 0 R null 144 0 R 278 0 R 144 0 R 329 0 R null 145 0 R 279 0 R 145 0 R 330 0 R null 146 0 R 280 0 R 146 0 R 331 0 R null 147 0 R 281 0 R 147 0 R 332 0 R null 148 0 R 149 0 R]
endobj
277 0 obj
<>]/Lang(EN-US)/P 327 0 R/Pg 334 0 R/S/Link/Type/StructElem>>
endobj
278 0 obj
<>]/Lang(EN-US)/P 144 0 R/Pg 334 0 R/S/Link/Type/StructElem>>
endobj
279 0 obj
<>]/Lang(EN-US)/P 145 0 R/Pg 334 0 R/S/Link/Type/StructElem>>
endobj
280 0 obj
<>]/Lang(EN-US)/P 146 0 R/Pg 334 0 R/S/Link/Type/StructElem>>
endobj
281 0 obj
<>]/Lang(EN-US)/P 147 0 R/Pg 334 0 R/S/Link/Type/StructElem>>
endobj
147 0 obj
<>
endobj
334 0 obj
<>/Font<>>>/StructParents 124/Tabs/S/Type/Page>>
endobj
339 0 obj
[348 0 R 333 0 R 335 0 R 336 0 R 337 0 R 338 0 R]
endobj
340 0 obj
<>stream
HWnH}W(M2dZdN0ȴĦIN6[U}!MIv_DRdN:'fر~v]}ͮ՚}îJ(X*+N3~^>E=7l:f[ϧgl4=b2ƶf42f4,lF7VIVL)Tl0K&eZqLt*٘]y_d"zo5fL?}9OsQ2S-!yKVy/sWݡ̝'g
2. nd͝2rLüH36=kt 8D'C!Tod"1Yl%z{\_h*+!^RB24
*s.y_
J~ "d
[k=wj]Pl6vOBoZ|f[6HjA~kUW7VIu܌D)+y)U筵|(jT蔇۔JU|:B%B!K?C%Z]]qh/G{s/G鋇y)#t~t 7Ph볗MfАe(XvhP3PPk,2Ee
U*v5egJkq\r
-\S PI<,`9O8&BViS^2ڤoڡ)qq@V؛&\i܋]
a4W #+iob<*ЇF6o_~68QeTzmH>@ݲW./EYYn۠`^Z&$(c@ޛ{kҕj_xU]עȫ̊LE˰N"G~6 Qͳ)lvĆe]Ơ)4/&R9* *.ݡo`I iA\+g{,5S9+y+C(wDžU\Y"DĻX6=1GJmZ@,h<*Swm^N|fg{}BakdO4umC3G]yĂKھd`9ME5w7` "HFf.e4O.GQH:I]&a@J|,4ڣYgAT|_>DFI$gkm6L~̣9$z7\!@+q7k,T Eɹ5s@9G?q|aG;fg| Uu"ǿ
`