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Abstract 
In this paper we take a new approach to solving the Rayleigh-Sommerfeld-Smythe 
equation for a telescope’s optical impulse response to a monochromatic point 
source spherical wave radiating outward from the origin in the object plane. 
Two cases are covered: 1) the point source at the origin in the telescope’s 
near-field object plane; 2) the point source at the origin in the far-field object 
plane as is the case with satellite infrared sensors when the distance between 
the telescope and the point source is very much greater than the telescope’s 
circular aperture diameter. With only the assumption of a thin circular aper-
ture we 1) derive a general solution that erases the distinction among the 
three classically defined zones of the optical axis: Near, Fresnel, and Fraun-
hofer; 2) reduce the computational complexity down from two-dimensional 
to one-dimensional Fourier transform integrals and; 3) identify Filon qua-
drature as the numerical method of choice for accurately and efficiently ap-
proximating the values of these integrals and; 4) provide a computational 
example. 
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1. Introduction 

The Rayleigh-Sommerfeld-Smythe equation is derived from the first principles 
of Maxwell’s renowned electro-magnetic light wave equations. In this paper we 
follow the point-source spherical monochromatic wave formulation of the equa-
tions in [1] and [2]. In [1] George derives the equation of electric field propaga-
tion from the telescope’s circular aperture into its interior. In [2] Dubois derives 
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the simple form of the point-source monochromatic spherical wave equation for 
the electric field on a telescope’s thin circular aperture.  

George makes the traditional distinction between the electric fields in the 
Near, Fresnel and Fraunhofer zones along the telescope’s optical axis. Then he 
applies a two-dimensional Fourier analysis approach to approximate the optical 
impulse response function in the Fraunhofer region. This approximation de-
pends on a linearization after dropping a term that is claimed to be negligible. 

In contrast, assuming only a thin circular aperture, we make no distinction 
between the Near, Fresnel and Fraunhofer zones, keep all terms, do not linearize, 
and derive reductions from two-dimensional down to one-dimensional Fourier 
transforms. We cover the two essential cases: 1) the radiating point source delta 
function at the origin in the near field when the distance between observing 
sensor and observed object is tens to hundreds of times the telescope diameter; 
2) where this distance is very much greater than the telescope’s aperture diame-
ter and is on the order of several tens of millions of meters as is the case with sa-
tellite-borne infrared sensor systems. 

In both cases the solutions turn out to be the convolution of two circularly 
symmetric functions of two spatial planar variables. The first of these functions 
accounts for the propagation of the electric field over the telescope’s aperture 
into the telescope’s interior while the second is a consequence of the monoch-
romatic spherical wave formulation. The two-dimensional Fourier transform of 
this first function reduces to a Fourier transform of a function of one spatial va-
riable, the Euclidian distance between the telescope’s interior point and the 
aperture center, evaluated at the inverse of the wavelength. We derive the 
one-dimensional Fourier transform of the second function in the near-field first 
case. In the far-field second case it is the well-known “Sombrero” function.  

The rest of the paper is organized as follows: Section 2 details definition and 
notation. Section 3 is devoted to our derivations. Section 4 provides a computa-
tional example. Section 5 draws the conclusions from our derivations and nu-
merical results Section 6 points to possible future research directions. Section 7 
supplies our references. 

2. Definitions and Notation 

Z = Distance along the sensor optical z-axis from the sensor to the point source 
at the origin of the object plane 

telλ  = Operating wave length (m) 
2tel telk λ= π  (m−1) is the optical wave number 

telD  = Circular aperture diameter (m) 

telf  = Focal length (m) 
( ), , , 0x y z z >  is the coordinate vector of an arbitrary point in the right half 

space of the telescope’s interior with positive z measured along the optical axis 
into the telescope from the center of the aperture and the planar x and y coordi-
nates measured orthogonal to the optical z-axis.  

The linear transformation between coordinates in the far field object plane, 
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( ), ,o o ox y z  and the telescope coordinates ( ), ,x y z  is given by 
,

,
.

o

o

o

x x
y y
z z

= −

=

= −

                               (1) 

3. Derivations 
3.1. The General Form of the Fourier Transform of the Optical  

Impulse Response Function 

Let ( ) 2 2 2, ,0 , 4x telE x y x y D+ ≤  be the x-component of the electric field on the 
telescope’s thin circular aperture. Then, following [1], the x-component of the 
electric field at ( ), , , 0x y z z >  in the telescope interior, propagates from the 
telescope’s aperture into the telescope interior according to: 

( ) ( ) ( ) ( ) ( )

( ) ( )

2

2 2 2

, , 2 exp 1 , ,0 d d ,

.

x tel tel xE x y z iz ik R ik R R E x y x y

R x x y y z

∞ ∞

−∞ −∞

  ′ ′ ′ ′= π − +    

′ ′= − + − +

∫ ∫
  (2) 

We first note, treating both Z and z as a parameters, that the integral on the 
R.H.S of Equation (2) above is a two-dimensional convolution, P Q∗ , where 

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2 2

2 2 2

, ; exp 1 ,

,
, ; , ,0 exp ,

.

tel tel

x tel

P x y z ik R ik R R

R x y z
Q x y Z E x y ik S S

S x y Z

 = − + 
= + +

= = −

= + +

               (3) 

The Fourier transform of Q is, formally: 

( ) ( ) ( )exp 2 exp d d .x y telQ i f x f y ik S x y S
∞ ∞

−∞ −∞

 = − π + − ∫ ∫           (4) 

If we transform to polar coordinates: 

2 2

cos ,
sin ,

,
0 2 ,
d d d d ,
d d ,

x r
y r

r x y

x y r r
r r S S

θ
θ

θ
θ

=
=

= +

≤ ≤ π
=

=

                            (5) 

( )( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2 2

2 2

2

4
2 2

0 0

4 2

0

2 2
0

cos , sin
exp 2 exp d d

exp d exp 2 cos cos sin sin d

exp d exp 2 cos d

2 exp 2 d

tel

tel

tel

x y tel
x y D
D

tel

Z D

tel
Z

Z

tel
Z

Q
i xf yf ik S S x y

ik S r r S i r

ik S S i r

ik S J S Z S

µ ϕ µ ϕ

µ ϕ θ ϕ θ θ

µ θ ϕ θ

µ

+ ≤

π

+ π

   = − π + −  

= − − π +  

= − − π −  

= π − π −

∫∫

∫ ∫

∫ ∫



2 4

,
telD+

∫
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( )

0

2 2

1

is the zeroth order Bessel function of the first kind,

,

tan ,

0 2 .

x y

y x

J

f f

f f

µ

ϕ

ϕ

−

= +

=

≤ ≤ π

           (6) 

Clearly, the last integral in Equation (6) above exists for all [ )0,µ ∈ ∞ . For 
practical computational purposes it can be accurately approximated numerically 
by the method of Filon quadrature [3].  

The proof of the existence of ( )P , which is necessary for both near and 
far-field case applications is covered below.  

3.2. The Fourier Transform of the Far Field Optical Impulse  
Response Function 

We assume telZ D , as is the case for infrared surveillance satellites. We can 
thus make the highly accurate approximating assumption, which will be vali-
dated in the sequel, that the electric field over the circular aperture induced by a 
1 watt/steradian point source δ -function, ( ),o ox yδ , monochromatic spherical 
wave radiating from the origin in the object plane is a constant, 

( )exp teli ik Z Z− . From [1] and [2] we formulate the equation for the electric 
field impulse response function, xE , to the unit point source, in the telescope’s 
x-axis direction, onto the telescope aperture and from the aperture into the tele-
scope’s interior point ( ), , , 0x y z z > . An identical treatment holds for the elec-
tric field’s y-axis component, yE . The equation for xE  is accurately approx-
imated by:  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2

2 2 2

2 2

, exp 2

exp 1 circ 2 ,2 d d ,

,

1 if 2circ 2 ,2
0 otherwise

x tel

tel tel tel tel

tel
tel tel

E x y i ik Z Z z

ik R ik R R x D y D x y

R x x y y z

x y Dx D y D

∞ ∞

−∞ −∞

 = − π   

  ′ ′ ′ ′× − + 

′ ′= − + − +

 ′ ′ + ≤′ ′ = 


∫ ∫
    (7) 

Again we note, this time treating z as a parameter, that the integral on the 
R.H.S of Equation (7) above is a two-dimensional convolution, P Q∗  where P 
is given by Equation (3) and for the far-field case, assuming constant aperture 
illumination: 

( ) ( ), circ 2 , 2tel telQ x y x D y D=                   (8) 

If the Fourier transform, ( )( ),x yP f f , exists we can write the Fourier 
transform of the convolution, ( )P Q∗ , as  

( )( ) ( )( ) ( )( )
( )( ) ( ) ( ) ( )2

1

1

, , , ,

cos , sin ) 4 ,

 is the Bessel function of the first kind of order 1,

x y x y x y

tel tel tel

P Q f f P f f Q f f

Q D J D D

J

µ ϕ µ ϕ µ µ

∗ =

= π π π
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( )

2 2

1

,

tan ,

0 2 .

x y

y x

f f

f f

µ

ϕ

ϕ

−

= +

=

≤ ≤ π

                        (9) 

Turning our attention to the existence of ( )( ),x yP f f , noting the circular 
symmetry of P as a function of the spatial planar coordinates ( ),x y , and once 
more making the transformation of variables from Cartesian rectangular to po-
lar coordinates, 

 ( )( ),x yP f f , written formally, is: 

( )( )
( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( )

2

2
2

0 0
2

2

0 0

0

,

exp 2 exp 1 d d

exp 1 d exp 2 cos cos sin sin d

exp 1 d exp 2 cos d

2 exp

x y

x y tel tel

tel tel

tel tel

tel

P f f

i xf yf ik R ik R R x y

ik R ik R R r r i r

ik R ik R R r r i r

ik R J

µ ϕ θ ϕ θ θ

µ θ ϕ θ

∞ ∞

−∞ −∞
∞ π

∞ π

   = − π + − +  

 = − + − π +   

 = − + − π −   

= π −

∫ ∫

∫ ∫

∫ ∫



( ) ( ) 2

0

2 1 d ,telr ik R R r rµ
∞

 π + ∫

 

( )

0
2 2 2

2 2

1

 is the zeroth order Bessel function of the first kind,

,

,
tan ,

0 2 .

J
R x y z

r x y
y xθ

θ

−

= + +

= +
=
≤ ≤ π

         (10) 

Thus, we must determine the set of all µ  for which the last integral in Equa-
tion (10) above exists for a given 0z > . We show in the proof below that the 
integral exists, for a given 0z > , for all [ )0,µ ∈ ∞ . 

Proof 
We start by again making a change of variables  

2 2 ,
d d .

r R z
r r R R
= −
=

                           (11) 

Let 

( ) ( )
( )

( ) ( )
( )( )

2 2
0

2 2 2 2
1

2 ,

d 2 2 d ,

exp ,

d exp 1 d .
tel

tel tel

u R J R z

u J R z R R R z

v R ik R R

v ik R ik R R R

µ

µ µ

= π −

= − π π − −

= − −

= − +

              (12) 

Then, integrating by parts: 

( ) ( ) ( )

( ) ( ) ( )

2
0

0

2 2
0

exp 2 1 d

exp 2 1 d

tel tel

tel tel
z

ik R J r ik R R r r

ik R J R z ik R R R

µ

µ

∞

∞

 − π + 

 = − π − + 

∫

∫
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( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2 2
0

2 2 2 2
1

2 2 2 2
1

d 2 exp

2 exp 2 d

exp 2 exp 2 d .

tel
zz

tel
z

tel tel
z

u R v R J R z ik R R

ik R J R z R R z

ik z z ik R J R z R R z

µ

µ µ

µ µ

∞ ∞

∞

∞

 = = − π − −  

− π − π − −

= − − π − π − −

∫

∫

∫

   (13) 

We make a second change of variables: 

2 2 2 ,w R z= −                            (14) 

Then 

( ) ( )
( ) ( )

2 2 2 2
1

4 2 2 4 2
1

0

2 exp 2 d  

4 exp 2 d .

tel
z

tel

ik R J R z R R z

ik z w z J zw w w w z

µ µ

µ µ

∞

∞

π − π − −

= π − + π +∫

∫
         (15) 

From the asymptotic properties of 1J  there exist positive numbers, C and T 
such that for all for all t T≥  

( ) ( ) ( )1 2 cos 3 4 ,

.
t

t

J t t t c t

c C

= π − π +

≤
                   (16) 

Figure 1 below is a graph of the function ( ) ( )1 2 cos 3 4tJ t t t− π − π . We 
can see that the choice of 0.3K = , for example, guarantees that for all 

( )0,t∈ ∞  

( ) ( )1 2J t t K t< π + .                        (17) 

 

 

Figure 1. ( ) ( )1 2 cos 3 4tJ t t t− π − π  vs. t. 
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From the inequality (17) it follows that there exists a positive number W such 
that for all w W≥ , 

( ) ( ) ( )2 2
1 2 1 1 2J zw z w K zwµ µ µ   π < π +    .          (18) 

Thus  

( ) ( )

( )

( )

4 2 2 4 2
1

2 4 2
1

4 2

4 exp 2 d

4 2 d

4 1 2 d .

tel
W

W

W

ik z w z J zw w w w z

J zw w w w z

z K zw w w z

µ µ

µ µ

µ µ

∞

∞

∞

π − + π +

≤ π π +

 < + + < ∞ 

∫

∫

∫

       (19) 

We have now proved that the integrand,  
( ) ( )2 2 2 2

1exp 2telik R J R z R zµ− π − − , is absolutely integrable and defines, 
for each 0z > , a continuous complex function of µ , ( );g zµ , parametrized 
by z, such that for all [ )0,µ ∈ ∞ :  

( ) ( ) ( ) ( )
( ) ( )

2 2 2 2
1; exp 2 exp 2 d ,

0; e xp .

tel tel
z

tel

g z k iz z ik R J R z R R z

g z k iz z

µ µ µ
∞

= − − π − π − −

= −

∫  (20) 

If we now define 

( ) ( )( )2 2
0, ; 2 1 ,telf R z J R z ik R Rµ µ= π − +              (21) 

Equation (11) can be written: 

( )( ) ( ) ( ) ( )cos , sin 2 exp 2 , ; d 2 ; ,

0 ,0 2 , 0.

tel
z

P iR f R z R g z

z

µ ϕ µ ϕ λ µ µ

µ ϕ

∞

= π − π = π

≤ < ∞ ≤ ≤ π >

∫
 (22) 

So, ( )P  exists for all 0z >  and [ )0,µ ∈ ∞  and we recognize the integral 
in Equation (22) above to be the Fourier transform, with respect to R, of the 
function, ( ), ;f R zµ , evaluated at the spatial frequency 1 telλ . Note that Equa-
tion (22) is valid in general on the family of geometric planes parametrized by 
each 0z > . So, Equation (22) applies equally in all three classically defined cas-
es: z in the Near, z in the Fresnel, or z in the Fraunhofer zones of the optical axis. 

Finally, we can summarize our derivations in the equation for the Fourier 
transform of the optical impulse response function to a far-field radiating point 
source, xE , as a function of the polar spatial frequency variables, ( ),µ ϕ  and 
the parameters Z and z: 

( )( )
( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

( )
( ) ( )

2

1

cos , sin

exp 2 2 cos , sin cos , sin

4 exp 2 exp 2 , ; d

,   

.

x

tel

tel tel tel
z

tel

E

iz iZ Z P Q

D iz iZ Z iR f R z R

Somb D

Somb w J w w

µ ϕ µ ϕ

λ µ ϕ µ ϕ µ ϕ µ ϕ

λ λ µ

µ

∞

 = − π π 
 

 = π − π − π  
 

⋅ π

=

∫



 

  (23) 
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Note that the Equations (14) and (23) above also imply that ( )xE  is a con-
tinuous function of z, [ )0,z∈ ∞ .  

It then follows that, given an object plane intensity-at-the source distribution, 
( ),o oO x y  (watts/steradian), on the far-field object plane oz Z= − , and assum-

ing the existence of its Fourier transform,  

( )( ) ( ) ( ), exp 2 , d dx y x yO f f i f x f y O x y x y
∞ ∞

−∞ −∞

 = − π + − ∫ ∫ ,        (24) 

the Fourier transform of the induced electric field in the x-direction, 

( )( )0, ,x x yE f f , is given by 

( )( ) ( ) ( )( )0, , ,x x y x x yE f f E O f f=                    (25) 

and the observed electric field on the geometric plane at z is give by 

( ) ( ) ( )( )0, exp 2 , d dx x y x x yE i f x f y E O f f x y
∞ ∞

−∞ −∞

 = π + ∫ ∫   .        (26) 

The issue now becomes one of finding an accurate and efficient numerical 
method to approximate the Fourier transform integral factor, ( )xE , in (25) 
above for on the geometric focal plane, telz f= , the infinite upper limit replaced 
by a sufficiently large positive number B so that the magnitude of the integral’s  

tail, ( ) ( )exp 2 , ; dtel tel
B

iR f R f Rλ µ
∞

− π∫  is small relative to  

( ) ( )exp 2 , ; d
tel

B

tel tel
f

iR f R f Rλ µ− π∫ . Equation (22) provides us with two options  

for the far-field exploitation of Filon quadrature: 1) apply the Filon method to 
the integrand ( ), ; telf R fµ  directly or equivalently 2) apply the Filon method 
to the integrand that appears in the definition of ( ), ; telg R fµ . In either case the 
effectiveness of the numerical method will depend on the behavior of the third 
and fourth derivatives of these two functions with respect to R. This is the case 
because the Filon quadrature cosine and sine error terms, cose  and sine , can be 
written for, say, the former case as: 

( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( )

3 3
cos

1

4 4 7

2 1 sin 2 1

,

n

tel
j

tel

e C h f f j h j j

C h f O k h

ϑ

ξ

=

= + − −

− +

∑
         (27) 

( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( )

3 3
sin

1

4 4 7

2 1 cos 2 1

,

n

tel
j

tel

e C h f f j h j j

C h f O k h

ϑ

ξ

=

= + − −

− +

∑
         (28) 

( ) ( ) ( )3 42 45 ,telC h k h=  

( ) ( ) ( )( )4 41 180 ,telC h B f h= −  

h = the Filon quadrature step-size 
( )teln B f h= − , 

telk hϑ = , 
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( )3f  is the third derivative of f with respect to R, 
( ) ( )4f ξ  is the fourth derivative of f at the intermediate point ξ , 
( ),telf Bξ ∈ . 

Equations (27) and (28) above allow us to make two key observations. First, 
since telλ  is small, we can choose h to be a large integer multiple of telλ , say, in 
our monochromatic case for example, 510 0.2875 mtelh λ= = . This implies that 
ϑ  is an integral multiple of 2π and consequently that the first summation term 
on the R.H.S of (27) for the cosine error term above vanishes identically. We can 
use a similar trick to make the sine error summation term of (28) to vanish by 
choosing h to be a large odd integral multiple of 4telλ . Second, we can choose 
B to be a large integer multiple of telf , which we can, in turn, choose to be a 
large integral multiple of telλ , thus guaranteeing that n is indeed an integer. The 
decision on which option, (i) or (ii) to choose follows from comparing and con-
trasting the graphs of the fourth derivatives: 4 4d df R  and  

( )4 2 2 2 2 4
1d 2 dtel telJ R f R f Rµπ − − , [ ],telR f B∈ . Figure 2 and Figure 3 

provide the comparative and contrasting graphs that motivate our choice of op-
tion (i). 

Note how, for 10µ = , the magnitude of 4 4d df R  drops off rapidly as R 
increases, while the magnitude of ( )4 2 2 2 2 4

1d 2 dtel telJ R f R f Rµπ − −  stays 
much larger than 1 all the way out to B. 

4. A Far-Field Computational Example 

The idealized geometric setting for this numerical experiment is a geo-stationary  
 

 
Figure 2. 4 4d df R  vs. R, 10µ = . 
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Figure 3. ( )4 2 2 2 2 4
1d 2 dtel telJ R f R f Rµπ − −  vs. R, 10µ = . 

 
infrared surveillance satellite stationed above an ellipsoidal earth at zero degrees 
latitude and longitude. The telescope’s unit boresight vector is pointed from the 
satellite to the earth center. The 1 watt/steradian delta function point source is 
on the equator directly below the spacecraft at zero degrees geodetic latitude and 
zero degrees longitude. We make the simplifying assumption that there is no 
atmospheric absorption of the light emitted from the point source so that the 
source intensity is not attenuated.  

4.1. Parameter Values 

The numerical values of the parameters are: 

( )
( )

( )
( )

6

6

35862945 m

2.875 10 m

2.1854558 10
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tel

tel

tel

tel

Z

k
D

f

λ −

=

= ×

= ×

=

=

 

4.2. The Electric Field on the Geometric Focal Plane 

We focus on the electric field, xE , on the geometric focal plane at telz f=  and, 
for computational convenience, without loss of generality, have chosen to make 
the ratio of the focal length to the wavelength an integer,  

.tel telf Mλ =                         (29) 

We first address the assumption of a uniform electric field on the aperture by 
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comparing the MATLAB computation of the value of the field at the aperture 
center: 

( ) 1.561149216428995e 008 2.3104006exp 16893207e 008teli i Z ik Z − − −− =  

with the MATLAB computation of the field on the circumference of the aper-
ture: 

( )2 2 2 2exp 4 4

1.561149216428995e 008 2.310400616893207e 008

tel tel teli ik Z D Z D

i

− + +

= − − −
 

Note that the numerical values of the electric field at aperture center and the 
field on the circumference agree to 15 decimal places in both their real and im-
aginary parts. So, we can conclude that the assumption of uniform aperture il-
lumination is indeed valid in this far-field case at hand. 

Next we specialize Equation (23) to telz f= , on the geometric focal plane: 
Apropos of our analysis of the Filon quadrature fourth order error term we 

have chosen 2001 11505.75 mtelB f= =  and 510 0.2875 mtelh λ= =  Table 1 
below shows the surprising result that, over the range 11000 mµ −≤  in spatial  

frequency the integral, ( ) ( )exp 2 , ; d
tel

B

tel tel
f

iR f R f Rλ µ− π∫ , is nearly a constant  

1 telf≈ . We note that the small magnitude of its imaginary part is about the size 
of error term that we see in Figure 2 for 3000 mR > . 

Assuming that the Filon quadrature results shown above are as accurate as 
they appear to be and hold up as µ →∞  we are left with one of two possible 
inferences: 1) either the Fourier transform,  

( )( ) ( ) ( )cos , sin 2 exp 2 , ; d
tel

tel tel
f

P iR f R f Rµ ϕ µ ϕ λ µ
∞

= π − π∫ , is spatial frequency  

band-limited, i.e., has compact support in [ )0,µ ∈ ∞  so that ( )P  vanishes 
outside some very large circle in the spatial frequency domain or 2) begins to 
approach and tend to zero as µ →∞  only for extremely large values of µ .  

5. Conclusion 

With the single essential hypotheses of a thin circular aperture illuminated by a 
monochromatic point source at the origin of the object plane (both near-field 
and far-field) we have proven the existence of and derived exact near and 
far-field equations for the Fourier transform of the electric field optical impulse 
response function on any plane perpendicular to the telescope’s optical axis at 
distance z from the telescope aperture center. This equation applies in general to 
Near, Fresnel, and Fraunhofer zones of the optical z -axis. Exploiting the me-
thod of Filon quadrature to numerically approximate the Fourier transform 
integral on the geometrical focal plane at telz f= , the results of our far-field 
numerical experiment show near constancy of the transform for [ ]0,1000µ ∈ . 
Thus, if indeed, ( ) 2 telP f= π  continues to hold for very large µ  and only 
begins to tend to 0 for extremely large µ , then the approximation (23) with  

https://doi.org/10.4236/oalib.1105856


R. Danchick 
 

 

DOI: 10.4236/oalib.1105856 12 Open Access Library Journal 
 

Table 1. ( ) ( )exp 2 , ; d
tel

B

tel tel
f

iR f R f Rλ µ− π∫  vs. µ . 

( )1mµ −  Real part Imaginary part 

  1.0e−005* 

0.0 0.17391304 0.0 

0.1 0.17391381 0.00901139 

0.2 0.17391247 0.03525097 

0.3 0.17391342 0.07175535 

0.4 0.17391285 0.09534192 

0.5 0.17391304 0.07085486 

0.6 0.17391319 0.00495292 

0.7 0.17391279 0.00503002 

0.8 0.17391332 0.11639266 

0.9 0.17391278 0.08773225 

1.0 0.17391322 −0.00937019 

  1.0e−006* 

2 0.17391317 0.83246373 

3 0.17391293 0.72246403 

4 0.17391295 0.16686315 

5 0.17391312 0.70117810 

6 0.17391311 0.34902437 

7 0.17391297 0.77900868 

9 0.17391310 0.53421215 

10 0.17391309 0.61893872 

20 0.17391301 0.44366636 

30 0.17391306 0.57884601 

40 0.17391302 0.65330362 

50 0.17391305 0.49909018 

60 0.17391303 0.62425627 

70 0.17391304 0.54182891 

80 0.17391304 0.48084418 

90 0.17391304 0.53787870 

100 0.17391304 0.49977880 

200 0.17391305 0.51428390 

300 0.17391305 0.52710666 

400 0.17391304 0.51710874 

500 0.17391303 0.54216137 

600 0.17391303 0.56829860 

700 0.17391303 0.55037385 

800 0.17391304 0.55356354 

900 0.17391305 0.51910046 

1000 0.17391305 0.56427341 
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( ) 2 telP f= π  would provide a useful optical systems engineering tool. 

6. Directions for Further Research 

There are three promising areas for future research. 
First, is the investigation of the computational accuracy of the Filon method 

to evaluate ( )( )cos , sinQ µ ϕ µ ϕ  in the near-field case. The Filon error Equa-
tion (32), applied to the integrand in the near-field Equation (6), would provide 
the jumping off point for this study. 

Second, is the determination whether ( )( )cos , sinP µ ϕ µ ϕ  is spatial fre-
quency band-limited in [ )0,µ ∈ ∞  or tails off to zero as µ →∞ . A good be-
ginning would be extension of Table 1 to very large values of µ . 

Recognizing that our results clearly apply to refractor telescopes, the third 
area for research is to investigate how our results can be applied to reflector 
telescope designs such as the Schmidt-Cassegrain telescopes that are used for sa-
tellite infrared surveillance missions.  
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