All Title Author
Keywords Abstract

Studies on Degradation of Diquat Pesticide in Aqueous Solutions Using Electrochemical Method

DOI: 10.4236/ajac.2012.32014, PP. 99-105

Keywords: Carbon Paste Electrode, Herbicide, C/PbO2, Electrode, Electrooxidation, Diquat Dibromide

Full-Text   Cite this paper   Add to My Lib


The C/PbO2 electrode assisted electrochemical removal of diquat dibromide herbicides solutions has been the subject of the present investigation under several operating conditions. The optimum conditions of the treatment process are: current density of 150 mA/cm2, pH 2.2, NaCl concentration 2 g/L, temperature of 10?C and initial diquat concentration of 50 mg/L. The time of electrolysis is 60 min for degradation rate of diquat and chemical oxygen demand (COD) removal is 210 min. The results were obtained by UV-Vis spectrophotometer and the present designed electrode was coincident.


[1]  T. Chichila and S. Walters, “Liquid Chromatographic Determination of Paraquat and Diquat in Crops Using a Silica Column with Aqueous Ionic Mobile Phase,” Journal—Association of Official Analytical Chemists, Vol. 74, 1991, pp. 961-967.
[2]  N. I. Sax, “Dangerous Properties of Industrial Materials,” Sixth edition, VanNostrand Reinhold Company, New York, 1984.
[3]  TOXNET, “National Library of Medicine’s Toxicology Data Network,” Hazardous Substances Da-tabank, Public Health Service, National Institute of Health, U. S. Department of Health and Human Services, NLM, Bethesda, 1985.
[4]  G. L. Berg (Ed.), “Farm Chemicals Handbook,” Meister Publishing Company, Willoughby, 1986.
[5]  F. Mo-gyoródy, “Electrochemical Degradation of Thiocarbamates in NaCl Solution,” Journal of Applied Electrochemistry, Vol. 36, No. 7, 2006, pp. 773-781. doi:10.1007/s10800-006-9136-9
[6]  D. W. Miwa, G. R. P. Malpass, S. A. S. Machado and A. J. Motheo, “Electrochemical Degradation of Carbaryl on Oxide Electrodes,” Water Research, Vol. 40, No. 17, 2006, pp. 3281-3289. doi:10.1016/j.watres.2006.06.033
[7]  A. Vlyssides, D. Ara-poglou, S. Mai and E. M. Barampouti, “Electrochemical Oxidation of Two Organophosphoric Obsolete Pesticide Stocks,” International Journal of Environment and Pollution, Vol. 23, No. 3, 2005, pp. 289-299.
[8]  C. Pulgarin and J. Kiwi, “Overview on Photocatalytic and Electrocatalytic Pretreatment of Industrial Non-Biode- gradable Pollutants and Pesticides,” Chimie, Vol. 50, 1996, pp. 50-55.
[9]  J. Gao, G. Zhao, W. Shi and D. Li, “Microwave Activated Electrochemical Degradation of 2,4-Dichlorophenoxya- cetic Acid at Boron-Doped Diamond Electrode,” Chemo- sphere, Vol. 75, No. 4, 2009, pp. 519-525. doi:10.1016/j.chemosphere.2008.12.018
[10]  C. Flox, P. L. Cabot, F. Centelas, J. A. Garrido, R. M. Rodríguez, C. Arias and E. Brillas, “Electrochemical Combustion of Herbicide Mecoprop in Aqueous Medium Using a Flow Reactor with a Boron-Doped Diamond Anode,” Chemosphere, Vol. 64, No. 6, 2006, pp. 892-902. doi:10.1016/j.chemosphere.2006.01.050
[11]  M. Polcaro, S. Palmas, F. Renoldi and M. Mascia, “On the Performance of Ti/SnO2 and Ti/PbO2 Anodesin Electrochemical Degradation of 2-Chlorophenol for Wastewater Treatment,” Journal of Applied Electro- chemistry, Vol. 29, No. 2, 1999, pp. 147-151. doi:10.1023/A:1003411906212
[12]  C. A. Mart?nez-Huitle, M. A. Quiroz, C. Comninellis, S. Ferro and A. D. Battisti, “Electrochemical Incineration of Chloranilic Acid Using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes,” Electrochimica Acta, Vol. 50, No. 4, 2004, pp. 949-956. doi:10.1016/j.electacta.2004.07.035
[13]  M. H. Abu Shawish N. Abu Ghalwa, M. Hamada and H. Basheer, “Modified Carbon Paste Electrode for Potenti- ometric Determination of Diquat Dibromide Pesticide in Water and Urine samples,” Materials Science and Engineering C, 2011, in Press.
[14]  L. G. Turner and R. E. Carawan, “Using COD to Measure Lost Product,” North Carolina Cooperative Extension Service, No. CD-38, North Carolina State University, 1996.
[15]  K. C. Narasimham and H. V. K. Udupa, “Preparation and Applications of Graphite Substrate Lead Dioxide (GSLD) Anode,” Journal of the Electrochemical Society, Vol. 123, No. 9, 1976, pp. 1294-1298. doi:10.1149/1.2133063
[16]  M. H. Mashhadizadeh, M. Talakesh, M. Peste, A. Momeni, H. Hamidian and M. Mazlum, “A Novel Modified Carbon Paste Electrode for potentiometric Determination of Mercury(II) Ion,” Electroanalysis, Vol. 18, No. 22, 2006 pp. 2174-2179. doi:10.1002/elan.200603643
[17]  PHA, AWWA and WEF, “Standard Methods for the Examination of Water and Waste-water,” 18th Edition, American Public Health Association, Washington DC, 1992.
[18]  H. S. Awad and N. Abo Galwa, “Electrochemical Degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 Electrode in the Presence of Different Con-ductive Electrolyte and Effect of Various Operating Factors,” Chemosphere, Vol. 61, No. 9, 2005, pp. 1327-1335. doi:10.1016/j.chemosphere.2005.03.054
[19]  M. Panizza, C. Bocca and G. Cerisola, “Electrochemical Treatment of Waste Water Containing Poliaromatic Organic Pollutants,” Water Research, Vol. 34, No. 9, 2000, pp. 2601-2605. doi:10.1016/S0043-1354(00)00145-7
[20]  H. Florencio, M. Pires, E. Castro, L. A. Nunes, R. M. Borges and F. M. Costa, “Photodegradation of Diquat and Paraquat in Aqueous Solutions by Titanium Dioxide: Evolution of Degradation Reactions and Characterization of Intermediate,” Chemosphere, Vol. 55, No. 3, 2004, pp. 345-355. doi:10.1016/j.chemosphere.2003.11.013
[21]  K. Asokan and K. Subramanian, “Design of a Tank Electrolyser for in-Situ Generation of NaClO,” Proceedings of the World Congress on En-gineering and Computer Science, Vol. 1, 2009, pp. 139-142.
[22]  A. Kraft, M. Stadelmann, M. Blaschke, D. Kreysig, B. Sandt, F. Schr?der and J. Rennau, “Electrochemical Water Disinfection Part 1: Hypochlorite Production from Very Dilute Chloride Solutions,” Journal of Applied Electrochemistry, Vol. 29, 1999, pp. 861-868.


comments powered by Disqus