All Title Author
Keywords Abstract


The Computation of Scalar Curvature in the Four-State Mixed Spin Model and the Investigation of Its Behavior: A Computational Study

DOI: 10.4236/jmp.2012.31005, PP. 37-42

Keywords: Scalar Curvature, Phase Transition, Spin Models

Full-Text   Cite this paper   Add to My Lib

Abstract:

The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the authors’ name: Alireza Heidari, Foad Khademi,Jahromi and Roozbeh Amiri. The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No.4 334-339, 2012, has been removed from this site.

References

[1]  W. Janke, D. A. Johnston and R. Kenna, “Information Geometry and Phase Transitions,” Physica A: Statistical Mechanics and Its Applications, Vol. 336, No. 1-2, 2004, pp. 181-186. doi:10.1016/j.physa.2004.01.023
[2]  G. Ruppeiner, “Thermodynamics: A Riemannian Geometric Model,” Physical Review A, Vol. 20, No. 4, 1979, pp. 1608-1613. doi:10.1103/PhysRevA.20.1608
[3]  G. Ruppeiner, “Riemannian Geometry in Thermodynamic Fluctuation Theory,” Reviews of Modern Physics, Vol. 67, No. 3, 1995, pp. 605-659. doi:10.1103/RevModPhys.67.605
[4]  G. Ruppeiner, “Thermodynamic Curvature and Phase Transitions in Kerr-Newman Black Holes,” Physical Review D, Vol. 78, 2008, pp. 024016-024028.
[5]  G. Ruppeiner, “New Thermodynamic Fluctuation Theory Using Path Integrals,” Physical Review A, Vol. 27, No. 2, 1983, pp. 1116-1133. doi:10.1103/PhysRevA.27.1116
[6]  G. Ruppeiner, “Application of Riemannian Geometry to the Thermodynamics of a Simple Fluctuating Magnetic System,” Physical Review A, Vol. 24, No. 1, 1981, pp. 488-492. doi:10.1103/PhysRevA.24.488
[7]  G. Ruppeiner and C. Davis, “Thermodynamic Curvature of the Multicomponent Ideal Gas,” Physical Review A, Vol. 41, No. 4, 1990, pp. 2200-2202. doi:10.1103/PhysRevA.41.2200
[8]  G. Ruppeiner, “Stability and Fluctuations in Black Hole Thermodynamics,” Physical Review D, Vol. 75, No. 2, 2007, pp. 024037-024047. doi:10.1103/PhysRevD.75.024037
[9]  G. Ruppeiner, “Riemannian Geometric Theory of Critical Phenomena,” Physical Review A, Vol. 44, No. 6, 1991, pp. 3583-3595. doi:10.1103/PhysRevA.44.3583
[10]  G. Ruppeiner, “Comment on Length and Curvature in the Geometry of Thermodynamics,’’ Physical Review A, Vol. 32, No. 5, 1985, pp. 3141-3141. doi:10.1103/PhysRevA.32.3141
[11]  G. Ruppeiner, “Riemannian Geometric Approach to Critical Points: General Theory,” Physical Review E, Vol. 57, No. 5, 1998, pp. 5135-5145. doi:10.1103/PhysRevE.57.5135
[12]  G. Ruppeiner, “Thermodynamics near the Correlation Volume,” Physical Review A, Vol. 31, No. 4, 1985, pp. 2688-2690. doi:10.1103/PhysRevA.31.2688
[13]  G. Ruppeiner, “Riemannian Geometry of Thermodynamics and Systems with Repulsive Power-Law Interactions,” Physical Review E, Vol. 72, No. 1, 2005, pp. 016120- 016133. doi:10.1103/PhysRevE.72.016120
[14]  G. Ruppeiner, “Asymmetric Free Energy from Riemannian Geometry,” Physical Review E, Vol. 47, No. 2, 1993, pp. 934-938. doi:10.1103/PhysRevE.47.934
[15]  G. Ruppeiner, “Thermodynamics at Less than the Correlation Volume,” Physical Review A, Vol. 34, No. 5, 1986, pp. 4316-4324. doi:10.1103/PhysRevA.34.4316
[16]  H. Janyszek and R. Mruga?a, “Riemannian Geometry and the Thermodynamics of Model Magnetic Systems,” Physical Review A, Vol. 39, No. 12, 1989, pp. 6515-6523. doi:10.1103/PhysRevA.39.6515
[17]  H. Janyszek and R. Mruga?a, “Geometrical Structure of the State Space in Classical Statistical and Phenomenological Thermodynamics,” Reports on Mathematical Physics, Vol. 27, No. 2, 1989, pp. 145-159. doi:10.1016/0034-4877(89)90001-3
[18]  H. Janyszek, “On the Riemannian Metrical Structure in the Classical Statistical Equilibrium Thermodynamics,” Reports on Mathematical Physics, Vol. 24, No. 1, 1986, pp. 1-10. doi:10.1016/0034-4877(86)90036-4
[19]  H. Janyszek, “On the Geometrical Structure of the Generalized Quantum Gibbs States,” Reports on Mathematical Physics, Vol. 24, No. 1, 1986, pp. 11-19. doi:10.1016/0034-4877(86)90037-6
[20]  H. Janyszek, “On the Connection between the Classical Spin and the Lorentz Group,” Reports on Mathematical Physics, Vol. 13, No. 3, 1978, pp. 311-313. doi:10.1016/0034-4877(78)90058-7
[21]  D. C. Brody and A. Ritz, “Information Geometry of Finite Ising Models,” Journal of Geometry and Physics, Vol. 47, No. 2-3, 2003, pp. 207-220. doi:10.1016/S0393-0440(02)00190-0
[22]  D. C. Brody and L. P. Hughston, “Geometric Quantum Mechanics,” Journal of Geometry and Physics, Vol. 38, No. 1, 2001, pp. 19-53. doi:10.1016/S0393-0440(00)00052-8
[23]  B. P. Dolan, D. A. Johnston and R. Kenna, “The Information Geometry of the One-Dimensional Potts Model,” Journal of Physics A: Mathematical and General, Vol. 35, No. 43, 2002, p. 9025. doi:10.1088/0305-4470/35/43/303
[24]  B. P. Dolan, W. Janke, D. A. Johnston and M. Stathakopoulos, “Thin Fisher Zeros,” Journal of Physics A: Mathematical and General, Vol. 34, No. 32, 2001, p. 6211. doi:10.1088/0305-4470/34/32/301.
[25]  W. Janke, D. A. Johnston and R. Kenna, “GeometroThermodynamics of the Kehagias-Sfetsos Black Hole,” Journal of Physics A: Mathematical and Theoretical, Vol. 43, No. 42, 2010, p. 425206. doi:10.1088/1751-8113/43/42/425206.
[26]  J. F. Wheater and J. Correia, “The Spectral Dimension of Non-Generic Branched Polymers,” Nuclear Physics B— Proceedings Supplements, Vol. 73, No. 1-3, 1999, pp. 783-785. doi:10.1016/S0920-5632(99)85202-5
[27]  J. Correia and J. F. Wheater, “Three-State Complex Valued Spins Coupled to Binary Branched Polymers in Two- Dimensional Quantum Gravity,” Nuclear Physics B— Proceedings Supplements, Vol. 63, No. 1-3, 1998, pp. 754-756. doi:10.1016/S0920-5632(97)00894-3
[28]  J. Correia and J. F. Wheater, “A Simple Model of Dimensional Collapse,” Physics Letters B, Vol. 388, No. 4, 1996, pp. 707-712. doi:10.1016/S0370-2693(96)01223-3
[29]  J. Correia and J. F. Wheater, “The Spectral Dimension of Non-Generic Branched Polymer Ensembles,” Physics Letters B, Vol. 422, No. 1-4, 1998, pp. 76-81. doi:10.1016/S0370-2693(98)00055-0
[30]  J. A. Cuesta and A. Sánchez, “General Non-Existence Theorem for Phase Transitions in One-Dimensional Systems with Short Range Interactions, and Physical Examples of Such Transitions,” Journal of Statistical Physics, Vol. 115, No. 3-4, 2004, pp. 869-893. doi:10.1023/B:JOSS.0000022373.63640.4e
[31]  J. A. Cuesta, A. Sánchez and F Dominguez-Adame, “Self-Consistent Analysis of Electric Field Effects on Si Delta-Doped GaAs,” Semiconductor Science and Technology, Vol. 10, No. 10, 1995, p. 1303. doi:10.1088/0268-1242/10/10/002.
[32]  J. A. Cuesta and A. Sánchez, “A Theorem on the Absence of Phase Transitions in One-Dimensional Growth Models with On-Site Periodic Potentials,” Journal of Physics A: Mathematical and General, Vol. 35, No. 10, 2002, p. 2373. doi:10.1088/0305-4470/35/10/303.
[33]  T. G. Kovacs and J. F. Wheater, “The Phase Structure of Two-Dimensional Pure Lattice Gauge Theories with Chern Term,” Modern Physics Letters A, Vol. 6, No. 30, 1991, pp. 2827-2835.

Full-Text

comments powered by Disqus