全部 标题 作者
关键词 摘要

PLOS ONE  2012 

Motor Representation of Actions in Children with Autism

DOI: 10.1371/journal.pone.0044779

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Children with Autistic Spectrum Disorders (ASD) are frequently hampered by motor impairment, with difficulties ranging from imitation of actions to recognition of motor intentions. Such a widespread inefficiency of the motor system is likely to interfere on the ontogeny of both motor planning and understanding of the goals of actions, thus delivering its ultimate effects on the emergence of social cognition. Methodology/Principal Findings We investigate the organization of action representation in 15 high functioning ASD (mean age: 8.11) and in two control samples of typically developing (TD) children: the first one, from a primary school, was matched for chronological age (CA), the second one, from a kindergarten, comprised children of much younger age (CY). We used nine newly designed behavioural motor tasks, aiming at exploring three domains of motor cognition: 1) imitation of actions, 2) production of pantomimes, and 3) comprehension of pantomimes. The findings reveal that ASD children fare significantly worse than the two control samples in each of the inspected components of the motor representation of actions, be it the imitation of gestures, the self-planning of pantomimes, or the (verbal) comprehension of observed pantomimes. In the latter task, owing to its cognitive complexity, ASD children come close to the younger TD children’s level of performance; yet they fare significantly worse with respect to their age-mate controls. Overall, ASD children reveal a profound damage to the mechanisms that control both production and pre-cognitive “comprehension” of the motor representation of actions. Conclusions/Significance Our findings suggest that many of the social cognitive impairments manifested by ASD individuals are likely rooted in their incapacity to assemble and directly grasp the intrinsic goal-related organization of motor behaviour. Such impairment of motor cognition might be partly due to an early damage of the Mirror Neuron Mechanism (MNM).

References

[1]  Kanner L (1943) Autistic disturbances of affective contact. Nervous Child 2: 217–250.
[2]  Rogers SJ, Williams JHG (2006) Imitation in autism: Findings and controversies. In: SJ Rogers & JHG. Williams (Eds.) Imitation and the social mind: Autism and typical development, New York: Guilford, 277–309.
[3]  De Myer MK, Alpern GD, Barton S, DeMyer WE, Churchill DW, et al. (1972) Imitation in autistic, early schizophrenic, and nonpsychotic subnormal children. J Autism Child Schizophr 2: 264–287.
[4]  Rogers SJ, Pennington BF (1991) A Theoretical Approach to the Deficits in Infantile Autism. Dev Psychopath 3: 137–62.
[5]  Williams JH, Whiten A, Singh T (2004) A Systematic Review of Action Imitation in Autistic Spectrum Disorder. J Autism Dev Disords 34: 285–99.
[6]  Whiten A, Brown J (1999) Imitation and the reading of other minds: from the study of autism, normal children and non-human primates. In: S. Braten (Ed.) Intersubjective communication and emotion in ontogeny: a sourcebook. Cambridge: Cambridge University Press, 260–280.
[7]  Sevlever M, Gillis JM (2010) An examination of the state of imitation research in children with autism: Issues of definition and methodology. Res Dev Disab 31: 976–984.
[8]  Press C, Richardson D, Bird G (2010) Intact imitation of emotional facial actions in autism spectrum conditions. Neuropsychologia 48: 3291–3297.
[9]  Bird G, Leighton J, Press C, Heyes C (2007) Intact automatic imitation of human and robot actions in autism spectrum disorders Proc. R. Soc. B 274: 3027–3031.
[10]  Leighton J, Bird G, Charman T, Heyes C (2008) Weak imitative performance is not due to a functional ‘mirroring’ deficit in adults with Autism Spectrum Disorders. Neuropsychologia 46: 1041–1049.
[11]  Rogers S, Young G, Cook I, Giolzetti A, Ozonoff S (2010) Imitating actions on objects in early-onset and regressive autism: Effects and implications of task characteristics on performance. Dev Psychopath 22: 71–85.
[12]  Ingersoll B, Schreibman L, Tran Q (2003) Effect of sensory feedback on immediate object imitation in children with autism. J Autism Dev Disord 33, 673–683.
[13]  Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 2: 593–609.
[14]  Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cognitive Brain Res 3: 131–41.
[15]  Gallese V, Fogassi L, Fadiga L, Rizzolatti G (2002) Action representation and the inferior parietal lobule. In: W. Prinz & B. Hommel (Eds.) Attention and performance, Oxford: Oxford University Press, 247–266.
[16]  Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27: 169–92.
[17]  Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, et al. (2005) Parietal lobe: from action organization to intention under standing. Science 308: 662–667.
[18]  Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, et al. (1988) Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res 71: 491–507.
[19]  Rizzolatti G, Fogassi L, Gallese V (2000) Cortical mechanisms subserving object grasping and action recognition: a new view on the cortical motor functions. In: MS Gazzaniga (Eds.) The cognitive neurosciences, Cambridge, MA: MIT Press, 539–552.
[20]  Gallese V, Keysers C, Rizzolatti G (2004) A unifying view of the basis of social cognition. Trends Cogn Sci 8: 396–403.
[21]  Kilner JM, Neal A, Weiskopf N, Friston KJ, Frith C (2009) Evidente of mirror neuron in Human Inferior frontal gyrus The Journal of Neuroscience. 29: 10153–10159.
[22]  Mukamel R, Ekstrom AD, Kaplan J, Iacoboni M, Fried I (2010) Single-neuron responses in Humans during Execution and Observation of Actions. Currrent Biology 20: 1–7.
[23]  Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, et al. (1999) Cortical mechanisms of human imitation. Science 286: 2526–8.
[24]  Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, et al. (2004a) Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron 42: 323–34.
[25]  Buccino G, Lui F, Canessa N, Patteri I, Lagravinese G, et al. (2004b) Neural circuits involved in the recognition of actions performed by nonconspecifics: An fMRI study. J Cogn Neurosci 16: 114–126.
[26]  Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta J, et al. (2005) Grasping the intentions of others with one’s owns mirror neuron system PLOS Biol. 3: 529–535.
[27]  Gallese V (2003) The manifold nature of interpersonal relations: the quest for a common mechanism. Phi Trans R Soc Lond B 358: 1231–1240.
[28]  Gallese V, Eagle MN, Migone P (2007) Intentional attunement: mirror neurons and the neural underpinnings of interpersonal relations. Journal of the American Psychoanalitic Association 55: 131–76.
[29]  Nielsen M, Carpenter M (2008) Reflecting on imitation in autism: introduction to the special issue. J Exp Child Psichol 101: 165–169.
[30]  Gallese V, Rochat M, Cossu G, Sinigaglia C (2009) Motor Cognition and its role in the phylogeny and ontogeny of intentional understanding. Dev Psychol 45: 103–113.
[31]  Rubini V, Padovani F (1986) Wechsler Intelligence Scale for Children Revised, Florence: Organizzazioni Speciali.
[32]  American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders-DSM-IV, Fourth Edition. Washington, DC: American Psychiatric Association.
[33]  Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, et al. (1989) Autism Diagnostic Observation Schedule: A standardized observation of communicative and social behaviour. J Autism Dev Disord 19: 185–212.
[34]  Raven JC (1984) Coloured Progressive Matrices. Firenze, Organizzazioni Speciali.
[35]  Watkins KE, Dronkers NF, Vargha-Khadem F (2002) Behavioural analysis of an inherited speech and language disorder: comparison with acquired aphasia. Brain 125: 452–464.
[36]  Boria S, Fabbri-Destro M, Cattaneo L, Sparaci L, Sinigaglia C, et al (2009) Intention Understanding in Autism. PLoS ONE 5: e 5596.
[37]  Mac Neil LK, Mostofsky SH (2012) Specificty of dyspraxia in children with Autism. Neuropsychology 26: 165–171.
[38]  Cattaneo L, Fabbri-Destro M, Boria S, Pieraccini C, Monti A, et al. (2007) Impairment of actions chains in autism and its possible role in intention understanding. Proc Natl Acad Sci USA 104: 17825–17830.
[39]  Theoret H, Halligan E, Kobayashi M, Fregni F, Tager-Flusberg H, et al. (2005) Impaired motor facilitation during action observation in individuals with autism spectrum disorder. Curr Biol 15: 84–85.
[40]  Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, et al. (2005) EEG evidence for mirror dysfunction in autism spectrum disorders. Cognitive Brain Res 24: 190–198.
[41]  Martineau J, Cochin S, Magne R, Barthelemy C (2008) Impaired cortical activation in autistic children: is the mirror neuron system involved? Int J Psychophysiol 68: 35–40.
[42]  Bernier R, Dawson G, Webb S, Murias M (2007) EEG rhythm and imitation impairment in individualswith autism spectrum disorder. Brain Cogn 64: 228–37.
[43]  Ramachandran VS, Pineda JA (2008) Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: the mirror neuron hypothesis. Neuropsychologia 46: 1558–65.
[44]  Dapretto M, Davies MS, Pfeifer JH, Scott AA, Sigman M, et al. (2006) Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci 9: 28–30.
[45]  McIntosh DN, Reichmann-Decker A (2006) When the social mirror breaks: deficits in automatic, but not voluntary mimicry of emotional facial expressions in autism. Developmental Science 69: 295–302.
[46]  Beall PM, Moody EJ, McIntosh DN, Hepburn SL, Reed CL (2008) Rapid facial reactions to emotional facial expressions in typically developing children and children with autism spectrum disorder. J Exp Child Psychol 101: 206–223.
[47]  Moll J, de Oliveira-Souza R, Passman LJ, Cimini-Cugna F, Souza-Lima F, et al. (2000) Functional MRI correlates of real and imagined tool-use pantomimes. Neurology 54: 1331–1336.
[48]  Grèzes J, Wicker B, Berthoz S, de Gelder B (2009) A failure to grasp the affective meaning of actions in autism spectrum disorders subjects. Neuropsychologia 47: 1816–1825.
[49]  Gallese V (2006) Intentional attunement: a neurophysiological perspective on social cognition and its disruption in autism. Brain Res 1079: 15–24.
[50]  Oberman LM, Ramachandran VS (2007) The simulating social mind: the role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychol Bull 133: 310–27.
[51]  Gallese V, Rochat MJ, Berchio C (2012) The mirror mechanism and its potential role in the autism spectrum disorder. Dev Medicine and Child Neurol, in press.

Full-Text

comments powered by Disqus