全部 标题 作者
关键词 摘要

PLOS ONE  2012 

Endobronchial Mucosa Invasion Predicts Survival in Patients with Small Cell Lung Cancer

DOI: 10.1371/journal.pone.0047613

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Current staging system for small cell lung cancer (SCLC) categorizes patients into limited- or extensive-stage disease groups according to anatomical localizations. Even so, a wide-range of survival times has been observed among patients in the same staging system. This study aimed to identify whether endobronchial mucosa invasion is an independent predictor for poor survival in patients with SCLC, and to compare the survival time between patients with and without endobronchial mucosa invasion. Methods We studied 432 consecutive patients with SCLC based on histological examination of biopsy specimens or on fine-needle aspiration cytology, and received computed tomography and bone scan for staging. All the enrolled patients were assessed for endobronchial mucosa invasion by bronchoscopic and histological examination. Survival days were compared between patients with or without endobronchial mucosa invasion and the predictors of decreased survival days were investigated. Results 84% (364/432) of SCLC patients had endobronchial mucosal invasion by cancer cells at initial diagnosis. Endobronchial mucosal involvement (Hazard ratio [HR], 2.01; 95% Confidence Interval [CI], 1.30–3.10), age (HR, 1.04; 95% CI, 1.03–1.06), and extensive stage (HR, 1.39; 95% CI, 1.06–1.84) were independent contributing factors for shorter survival time, while received chemotherapy (HR, 0.32; 95% CI, 0.25–0.42) was an independent contributing factor better outcome. The survival days of SCLC patients with endobronchial involvement were markedly decreased compared with patients without (median 145 vs. 290, p<0.0001). Among SCLC patients of either limited (median 180 vs. 460, p<0.0001) or extensive (median 125 vs. 207, p<0.0001) stages, the median survival duration for patients with endobronchial mucosal invasion was shorter than those with intact endobronchial mucosa, respectively. Conclusion Endobronchial mucosal involvement is an independent prognostic factor for SCLC patients and associated with decreased survival days.

References

[1]  Boring CC, Squires TS, Tong T, Montgomery S (1994) Cancer statistics, 1994. CA Cancer J Clin 44: 7–26.
[2]  Carney DN, Gazdar AF, Bepler G, Guccion JG, Marangos PJ, et al. (1985) Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res 45: 2913–2923.
[3]  Linnoila RI, Mulshine JL, Steinberg SM, Funa K, Matthews MJ, et al. (1988) Neuroendocrine differentiation in endocrine and nonendocrine lung carcinomas. Am J Clin Pathol 90: 641–652.
[4]  Albain KS, Crowley JJ, LeBlanc M, Livingston RB (1990) Determinants of improved outcome in small-cell lung cancer: an analysis of the 2,580-patient Southwest Oncology Group data base. J Clin Oncol 8: 1563–1574.
[5]  Simon GR, Wagner H (2003) Small cell lung cancer. Chest 123: 259S–271S.
[6]  Paesmans M, Sculier JP, Lecomte J, Thiriaux J, Libert P, et al. (2000) Prognostic factors for patients with small cell lung carcinoma: analysis of a series of 763 patients included in 4 consecutive prospective trials with a minimum follow-up of 5 years. Cancer 89: 523–533.
[7]  Yip D, Harper PG (2000) Predictive and prognostic factors in small cell lung cancer: current status. Lung Cancer 28: 173–185.
[8]  Chute JP, Venzon DJ, Hankins L, Okunieff P, Frame JN, et al. (1997) Outcome of patients with small-cell lung cancer during 20 years of clinical research at the US National Cancer Institute. Mayo Clin Proc 72: 901–912.
[9]  Kawahara M, Fukuoka M, Saijo N, Nishiwaki Y, Ikegami H, et al. (1997) Prognostic factors and prognostic staging system for small cell lung cancer. Jpn J Clin Oncol 27: 158–165.
[10]  Marsh BR, Frost JK, Erozan YS, Carter D (1974) Role of fiberoptic bronchoscopy in lung cancer. Semin Oncol 1: 199–203.
[11]  Ihde DC, Cohen MH, Bernath AM, Matthews MJ, Bunn PA, et al. (1978) Serial fiberoptic bronchoscopy during chemotherapy for small cell carcinoma of the lung: early detection of patients at high risk of relapse. Chest 74: 531–536.
[12]  Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, et al. (1982) Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 5: 649–655.
[13]  Paesmans M, Lafitte JJ, Lecomte J, Berghmans T, Efremidis A, et al. (2011) Validation and comparison of several published prognostic systems for patients with small cell lung cancer. European Respiratory Journal 38: 657–663.
[14]  Metze K (2011) Pitfalls in the assessment of prognostic factors. Lancet Oncol 12: 1095–1096.
[15]  Hou JM, Krebs MG, Lancashire L, Sloane R, Backen A, et al. (2012) Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol 30: 525–532.
[16]  Sutherland KD, Proost N, Brouns I, Adriaensen D, Song JY, et al. (2011) Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell 19: 754–764.
[17]  Park KS, Liang MC, Raiser DM, Zamponi R, Roach RR, et al. (2011) Characterization of the cell of origin for small cell lung cancer. Cell Cycle 10: 2806–2815.
[18]  Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64: 327–336.
[19]  Liotta LA (1984) Tumor invasion and metastases: role of the basement membrane. Warner-Lambert Parke-Davis Award lecture. Am J Pathol 117: 339–348.
[20]  Terranova VP, Hujanen ES, Martin GR (1986) Basement membrane and the invasive activity of metastatic tumor cells. J Natl Cancer Inst 77: 311–316.
[21]  Nakagawa H, Yagihashi S (1994) Expression of type IV collagen and its degrading enzymes in squamous cell carcinoma of lung. Jpn J Cancer Res 85: 934–938.
[22]  Havenith MG, Arends JW, Simon R, Volovics A, Wiggers T, et al. (1988) Type IV collagen immunoreactivity in colorectal cancer. Prognostic value of basement membrane deposition. Cancer 62: 2207–2211.
[23]  Albrechtsen R, Nielsen M, Wewer U, Engvall E, Ruoslahti E (1981) Basement membrane changes in breast cancer detected by immunohistochemical staining for laminin. Cancer Res 41: 5076–5081.
[24]  ten Velde GP, Havenith MG, Volovics A, Bosman FT (1991) Prognostic significance of basement membrane deposition in operable squamous cell carcinomas of the lung. Cancer 67: 3001–3005.
[25]  Chang MH, Lee K, Lee KY, Kim YS, Kim YK, et al. (2012) Prognostic role of integrin beta1, E-cadherin, and rac1 expression in small cell lung cancer. APMIS 120: 28–38.
[26]  Song J, Li M, Tretiakova M, Salgia R, Cagle PT, et al. (2010) Expression patterns of PAX5, c-Met, and paxillin in neuroendocrine tumors of the lung. Arch Pathol Lab Med 134: 1702–1705.
[27]  Ma PC, Kijima T, Maulik G, Fox EA, Sattler M, et al. (2003) c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res 63: 6272–6281.
[28]  Guo L, Liu Y, Bai Y, Sun Y, Xiao F, et al. (2010) Gene expression profiling of drug-resistant small cell lung cancer cells by combining microRNA and cDNA expression analysis. Eur J Cancer 46: 1692–1702.
[29]  Miko E, Czimmerer Z, Csanky E, Boros G, Buslig J, et al. (2009) Differentially expressed microRNAs in small cell lung cancer. Exp Lung Res 35: 646–664.
[30]  Lee JH, Voortman J, Dingemans AM, Voeller DM, Pham T, et al. (2011) MicroRNA expression and clinical outcome of small cell lung cancer. PLoS One 6: e21300.
[31]  Iwasaki Y, Sunaga N, Tomizawa Y, Imai H, Iijima H, et al. (2010) Epigenetic Inactivation of the Thyroid Hormone Receptor β1 Gene at 3p24.2 in Lung Cancer. Annals of Surgical Oncology 17: 2222–2228.
[32]  PELOSI G, FUMAGALLI C, TRUBIA M, SONZOGNI A, REKHTMAN N, et al. (2010) Dual Role of RASSF1 as a Tumor Suppressor and an Oncogene in Neuroendocrine Tumors of the Lung. Anticancer research 30: 4269–4281.

Full-Text

comments powered by Disqus