All Title Author
Keywords Abstract


Development of Nano-Structured AA1050 by ECAE and Thermal Treatments

DOI: 10.4236/snl.2011.14019, PP. 120-129

Keywords: ECAE, SPD, Aluminium, UFG.

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this present work, a study regarding the change in the mechanical properties and in the microstructure of the aluminium alloy AA1050 is made after being processed by severe plastic deformation (SPD) with Equal Channel Angular Extrusion (ECAE). Optical and scanning electron microscopy techniques will be employed in order to determine the evolution of the microstructure after different thermal treatments, subsequent to the severe plastic deformation process. This present work involves a profound study on the change in the mechanical properties for an alloy which has a very low value of strain hardening at room temperature. With this, it is demonstrated that it is possible to improve its mechanical properties significantly with an adequate combination of ECAE processing and thermal treatments.

References

[1]  M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev and T. Langdon, “Microstructural Characteristics of an Ultrafine Grain Metal Processed with Equal-Channel Angular Pressing,” Materials Characterization, Vol. 37, No. 5, 1996, pp. 277-283. doi:10.1016/S1044-5803(96)00131-3
[2]  R. Z. Valiev, A. V. Korznikov and R. R. Mulyukov, “Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation,” Materials Science and Engineering: A, Vol. 168, No. 2, 1993, pp. 141- 148. doi:10.1016/0921-5093(93)90717-S
[3]  V. M. Segal, “Plastic Working of Metals by Simple Shear,” Russian Metallurgy, Vol. 1, 1981, pp. 99-105.
[4]  P. A. Gonzalez, C. Luis-Pérez, Y. Garcés and J. Gil- Sevillano, “ECAE, una Tecnología de Procesado Emergente Para Producir Propiedades Relevantes en Materiales Metálicos,” Revista de Metalurgia, Vol. 37, No. 6, 2001, pp. 673-692.
[5]  N. Lugo, J. M. Cabrera, N. Llorca, C.J. Luis, R. Luri, J. León and I. Puertas, “Grain Refinement of Pure Copper by ECAP,” Materials Science Forum, Vol. 584-586, 2008. pp. 393-398. doi:10.4028/www.scientific.net/MSF.584-586.393
[6]  X. Zhao, W. Fu, X. Yang and T. G. Langdon, “Microstructure and Properties of Pure Titanium Processed by Equal-Channel Angular Pressing at Room Temperature,” Scripta Materialia, Vol. 59, No. 5, 2008, pp. 542-545. doi:10.1016/j.scriptamat.2008.05.001
[7]  R. Figueiredo and T. G. Langdon, “Strategies for Achieving High Strain Rate Superplasticity in Magnesium Alloys Processed by Equal-Channel Angular Pressing,” Scripta Materialia, Vol. 61, No. 1, 2009, pp. 84-87. doi:10.1016/j.scriptamat.2009.03.012
[8]  R. Z. Valiev and T. G. Langdon, “Principles of Equal- Channel Angular Pressing as a Processing Tool for Grain Refinement,” Progress in Materials Science, Vol. 51, No. 7, 2006, pp. 881-981. doi:10.1016/j.pmatsci.2006.02.003
[9]  E. A. El-Danaf, “Mechanical Properties and Microstructure Evolution of 1050 Aluminum Severely Deformed by ECAP to 16 Passes,” Materials Science and Engineering: A, Vol. 487, No. 1-2, 2008, pp. 189-200. doi:10.1016/j.msea.2007.10.013
[10]  C. Y. Yu, P.L. Sun, P. W. Kao and C. P. Chang, “Mechanical Properties of Submicron-Grained Aluminum,” Scripta Materialia, Vol. 52, No. 5, 2005, pp. 359-363. doi:10.1016/j.scriptamat.2004.10.035
[11]  A. Sivaraman and U. Chakkingal, “Investigations on Workability of Commercial Purity Aluminum Processed by Equal Channel Angular Pressing,” Journal of Materials Processing Technology, Vol. 202, No. 1-3, 2008, pp. 543-548. doi:10.1016/j.jmatprotec.2007.10.006
[12]  M. Kawasaki, I. J. Beyerlein, S. C. Vogel and T. G. Langdon, “Characterization of Creep Properties and Creep Textures in Pure Aluminum Processed by Equal-Channel Angular Pressing,” Acta Materialia, Vol. 56, No. 10, 2008, pp. 2307-2317. doi:10.1016/j.actamat.2008.01.023
[13]  M. Kawasaki, Z. Horita and T. G. Langdon, “Microstructural Evolution in High Purity Aluminum Processed by ECAP,” Materials Science and Engineering: A, Vol. 524, No. 1-2, 2009, pp. 143-150. doi:10.1016/j.msea.2009.06.032
[14]  J. May, H. W. H?ppel and M. G?ken, “Strain Rate Sensitivity of Ultrafine-Grained Aluminium Processed by Severe Plastic Deformation,” Scripta Materialia, Vol. 53, No. 2, 2005, pp. 189-194. doi:10.1016/j.scriptamat.2005.03.043
[15]  O. V. Mishin, J. R. Bowen and S. Lathabai, “Quantification of Microstructure Refinement in Aluminium Deformed by Equal Channel Angular Extrusion: Route A vs. Route Be in a 90 Degrees Die,” Scripta Materialia, Vol. 63, No. 1, 2010, pp. 20-23. doi:10.1016/j.scriptamat.2010.02.042
[16]  K. J. Kim, D. Y. Yang and J. W. Yoon, “Investigation of Microstructure Characteristics of Commercially Pure Aluminum during Equal Channel Angular Extrusion,” Materials Science and Engineering: A, Vol. 485, No. 1-2, 2008, pp. 621-626.
[17]  K. Xia and X. Wu, “Back Pressure Equal Channel Angular Consolidation of Pure Al Particles,” Scripta Materialia, Vol. 53, No. 11, 2005, pp. 1225-1229. doi:10.1016/j.scriptamat.2005.08.012
[18]  Y. W. Tham, M. W. Fu, H. H. Hng, Q. X. Pei and K. B. Lim, “Microstructure and Properties of Al-6061 Alloy by Equal Channel Angular Extrusion for 16 Passes,” Materials and Manufacturing Processes, Vol. 22, No. 7-8, 2007, pp. 819-824. doi:10.1080/10426910701446754
[19]  C. J. Luis Pérez, “On the correct selection of the channel die in ECAP processes,” Scripta Materialia, Vol. 50, No. 3, 2004, pp. 387-393. doi:10.1016/j.scriptamat.2003.10.007
[20]  R. Luri, C. J. Luis, J. León and M. A. Sebastián, “A New Configuration for Equal Channel Angular Extrusion Dies,” Journal of Manufacturing Science and Engineering-Transactions of the ASME, Vol. 128, No. 4, 2006, pp. 860-865. doi:10.1115/1.2194555
[21]  R. Luri, C. J. Luis Pérez, D. Salcedo, I. Puertas, J. León, I. Pérez and J. P. Fuertes, “Evolution of Damage in AA- 5083 Processed by Equal Channel Angular Extrusion Using Different Die Geometries,” Journal of Materials Processing Technology, Vol. 211, No. 1, 2011, pp. 48-56. doi:10.1016/j.jmatprotec.2010.08.032

Full-Text

comments powered by Disqus