All Title Author
Keywords Abstract


Inhibition of Mild Steel Corrosion by 3-Benzoylmethyl Benzimidazolium Hexafluoroantimonate in Acidic Solution

DOI: 10.1155/2012/246013

Full-Text   Cite this paper   Add to My Lib

Abstract:

The corrosion inhibition of mild steel in 1?M HCl solution by a synthesized compound (3-benzoylmethyl benzimidazolium hexafluoroantimonate) was investigated electrochemically and by weight loss experiments. The concentration of this inhibitor ranged from ?M to ?M. The effect of temperature (from 303 to 343?K) and concentrations (from ?M to ?M) were investigated. The percentage inhibition increased with the increase of the concentration of the inhibitor and reached about 98% at the concentration of ?M at 303?K. The percentage inhibition decreased with the increase of temperature. The thermodynamic parameters for the adsorption of this inhibitor on the metal surface were calculated. This compound was found to be a very good corrosion inhibitor due to the presence of nitrogen in benzimidazole and phenyl ring. 1. Introduction The corrosion of metals is a serious problem in many industries, installations, and civil services such as water and sewage supplies. One of the most useful and practical methods that used to control and protect metals against corrosion is the use of inhibitors, especially in acidic media. Not only the costs due to corrosion increase rapidly, but also the efficiency of the plants and the quality of the products are also reduced. Most inhibitors are organic compounds containing polar groups strongly adsorbed on the metal surface [1, 2]. These inhibitors, which include the organic N, P, S, and OH groups, are known to be similar to catalytic poisons, as they decrease the reaction rate at the metal/solution interface without, in general, being involved in the reaction considered. It is generally accepted that most organic inhibitors act via adsorption at the metal/solution interface. The mechanism by which an inhibitor decreases the corrosion current is achieved by interfering with some of the steps for the electrochemical process. The corrosion inhibition of mild steel in aggressive acidic solutions has been widely investigated. In industries, hydrochloric acid solutions are often used in order to remove scale and salts from steel surfaces, and cleaning tanks and pipelines. This treatment may be prerequisite for coating by electroplating, galvanizing, or painting techniques. The acid must be treated to prevent an extensive dissolution of the underlying metal. This treatment involves the addition of some organic inhibitors to the acid solution that adsorb at the metal/solution interface by displacing water molecules on the surface and forming a compact barrier film. Nitrogen-containing compounds as metal corrosion inhibitors have been

References

[1]  B. B. Damaskin, O. A. Pietrij, and W. W. Batrokov, “Adsorpcja organiczeskich sojedinienij na electrodach,” Moskva, 1968.
[2]  G. Okamoto, M. Nagayama, J. Kato, and T. Baba, “Effect of organic inhibitors on the polarization characteristics of mild steel in acid solution,” Corrosion Science, vol. 2, no. 1, pp. 21–27, 1962.
[3]  O. Benali, L. Larabi, M. Traisnel, L. Gengembre, and Y. Harek, “Electrochemical, theoretical and XPS studies of 2-mercapto-1-methylimidazole adsorption on carbon steel in 1 M HClO4,” Applied Surface Science, vol. 253, no. 14, pp. 6130–6139, 2007.
[4]  E. S. H. E. Ashry, A. E. Nemr, S. A. Essawy, and S. Ragab, “Corrosion inhibitors part V: QSAR of benzimidazole and 2-substituted derivatives as corrosion inhibitors by using the quantum chemical parameters,” Progress in Organic Coatings, vol. 61, no. 1, pp. 11–20, 2008.
[5]  K. F. Khaled, “The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions,” Electrochimica Acta, vol. 48, no. 17, pp. 2493–2503, 2003.
[6]  A. Popova, “Temperature effect on mild steel corrosion in acid media in presence of azoles,” Corrosion Science, vol. 49, no. 5, pp. 2144–2158, 2007.
[7]  A. Popova, M. Christov, S. Raicheva, and E. Sokolova, “Adsorption and inhibitive properties of benzimidazole derivatives in acid mild steel corrosion,” Corrosion Science, vol. 46, no. 6, pp. 1333–1350, 2004.
[8]  A. Popova, M. Christov, and A. Zwetanova, “Effect of the molecular structure on the inhibitor properties of azoles on mild steel corrosion in 1 M hydrochloric acid,” Corrosion Science, vol. 49, no. 5, pp. 2131–2143, 2007.
[9]  V. S. Sastri, J. R. Perumareddi, M. Lashgari, and M. Elboujdaini, “Application of ligand field theory in corrosion inhibition,” Corrosion, vol. 64, no. 4, pp. 283–288, 2008.
[10]  M. Scendo and M. Hepel, “Inhibiting properties of benzimidazole films for Cu(II)/Cu(I) reduction in chloride media studied by RDE and EQCN techniques,” Journal of Electroanalytical Chemistry, vol. 613, no. 1, pp. 35–50, 2008.
[11]  S. Vishwanatham and A. Kumar, “Corrosion inhibition of mild steel in binary acid mixture,” Corrosion Reviews, vol. 23, no. 2-3, pp. 181–194, 2005.
[12]  D. Q. Zhang, L. X. Gao, and G. D. Zhou, “Inhibition of copper corrosion in aerated hydrochloric acid solution by heterocyclic compounds containing a mercapto group,” Corrosion Science, vol. 46, no. 12, pp. 3031–3040, 2004.
[13]  D. Q. Zhang, L. X. Gao, G. D. Zhou, and K. Y. Lee, “Undecyl substitution in imidazole and its action on corrosion inhibition of copper in aerated acidic chloride media,” Journal of Applied Electrochemistry, vol. 38, no. 1, pp. 71–76, 2008.
[14]  K. Tebbji, A. Aouniti, A. Attayibat et al., “Inhibition efficiency of two bipyrazole derivatives on steel corrosion in hydrochloric acid media,” Indian Journal of Chemical Technology, vol. 18, pp. 244–253, 2011.
[15]  A. Nahlé, I. Abu-Abdoun, and I. Abdel-Rahman, “Electrochemical studies of the effect of trans-4-hydroxy-4'-stilbazole on the corrosion inhibition of mild steel in HCl solution,” Anti-Corrosion Methods and Materials, vol. 54, no. 4, pp. 244–248, 2007.
[16]  S. M. Beloglazov, Z. I. Dzhafarov, V. N. Polyakov, and N. N. Demushia, “Quaternary ammonium salts as corrosion inhibitors of steel in the presence of sulfate-reducing bacteria,” Protection of Metals USSR, vol. 27, no. 6, pp. 810–813, 1991.
[17]  A. V. Fokin, M. V. Pospelov, and A. N. Levichev, “Structural and protective capacities of organic corrosion inhibitors. 2. Alkylethylene diamines and quaternary ammonium salts,” Protection of Metals USSR, vol. 19, no. 2, pp. 242–244, 1983.
[18]  A. H. Nahlé, “Electrochemical studies of corrosion inhibition of a series of quaternary ammonium salts on iron in HCl solution,” Corrosion Prevention and Control, vol. 44, no. 4, pp. 99–105, 1997.
[19]  A. H. Nahlé, “Inhibition of iron in HCl using benzyl trimethyl- and triethyl-ammonium chlorides,” Corrosion Prevention and Control, vol. 45, no. 4, pp. 124–130, 1998.
[20]  A. Nahle, “Effect of triethanolamine on the electrochemical dissolution of solder in NaOH solution,” Bulletin of Electrochemistry, vol. 18, no. 3, pp. 105–110, 2002.
[21]  A. Nahlé and F. C. Walsh, “Electrochemical studies of two corrosion inhibitors for iron in HCl: cetyltrimethyl ammonium bromide and tetraphenyl phosphonium chloride,” Corrosion Prevention and Control, vol. 42, no. 2, pp. 30–34, 1995.
[22]  B. V. Savithri and S. M. Mayanna, “Tetrabutyl ammonium iodide, cetyl pyridinium bromide and cetyl trimethyl ammonium bromide as corrosion inhibitors for mild steel in sulphuric acid,” Indian Journal of Chemical Technology, vol. 3, no. 5, pp. 256–258, 1996.
[23]  T. Vasudevan, S. Muralidharan, S. Alwarappan, and S. V. K. Iyer, “The influence of N-hexadecyl benzyl dimethyl ammonium chloride on the corrosion of mild steel in acids,” Corrosion Science, vol. 37, no. 8, pp. 1235–1244, 1995.
[24]  S. Muralidharan, K. L. N. Phani, S. Pitchumani, S. Ravichandran, and S. V. K. Iyer, “Polyamino-benzoquinone polymers: a new class of corrosion inhibitors for mild steel,” Journal of the Electrochemical Society, vol. 142, no. 5, pp. 1478–1483, 1995.
[25]  J. D. Talati, M. N. Desai, and N. K. Shah, “Meta-Substituted aniline-N-salicylidenes as corrosion inhibitors of zinc in sulphuric acid,” Materials Chemistry and Physics, vol. 93, no. 1, pp. 54–64, 2005.
[26]  T. Tüken, B. Yazici, and M. Erbil, “The effect of nicotinamide on iron corrosion in chloride solutions,” Turkish Journal of Chemistry, vol. 26, no. 5, pp. 735–742, 2002.
[27]  A. A. A. Fattah, E. M. Mabrouk, R. M. A. Elgalil, and M. M. Ghoneim, “N-heterocyclic compounds as corrosion inhibitors for Zn in HCl acid solutions,” Bulletin de la Societé Chimique de France, vol. 1, pp. 48–53, 1991.
[28]  S. L. Granese, B. M. Rosales, C. Oviedo, and J. O. Zerbino, “The inhibition action of heterocyclic nitrogen organic compounds on Fe and steel in HCl media,” Corrosion Science, vol. 33, no. 9, pp. 1439–1453, 1992.
[29]  H. A. Al-Lohedan, E. Khamis, and Z. A. Issa, “Studies on the influence of temperature on the adsorption of some cationic surfactants on to steel,” Adsorption Science and Technology, vol. 13, no. 3, pp. 137–152, 1996.
[30]  L. G. Qiu, A. J. Xie, and Y. H. Shen, “A novel triazole-based cationic gemini surfactant: synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid,” Materials Chemistry and Physics, vol. 91, no. 2-3, pp. 269–273, 2005.
[31]  B. G. Ateya, B. E. El-Anadouli, and F. M. El-Nizamy, “The effect of thiourea on the corrosion kinetics of mild steel in H2SO4,” Corrosion Science, vol. 24, no. 6, pp. 497–507, 1984.
[32]  B. G. Ateya, B. E. El-Anadouli, and F. M. El-Nizamy, “The adsorption of thiourea on mild steel,” Corrosion Science, vol. 24, no. 6, pp. 509–515, 1984.
[33]  A. S. Fouda, M. N. Moussa, F. I. Taha, and A. I. Elneanaa, “The role of some thiosemicarbazide derivatives in the corrosion inhibition of aluminium in hydrochloric acid,” Corrosion Science, vol. 26, no. 9, pp. 719–726, 1986.
[34]  A. Nahle, “Effect of temperature on the corrosion inhibition of carbon steel in HCl solutions,” Bulletin of Electrochemistry, vol. 17, no. 5, pp. 221–226, 2001.
[35]  A. Nahlé, I. Abdel-Rahman, and M. Alfarouk, “Effect of temperature on the inhibition of corrosion of carbon steels by semicarbazides and thiosemicarbazides,” Bulletin of Electrochemistry, vol. 21, no. 8, pp. 353–361, 2005.
[36]  A. Nahlé, I. Abu-Abdoun, and I. Abdel-Rahman, “Corrosion Inhibition by (Anthraquinone-2-ylmethyl) triphenyl phosphonium bromide,” Bulletin of Electrochemistry, vol. 23, pp. 201–209, 2007.
[37]  A. Nahlé, I. Abu-Abdoun, and I. Abdel-Rahman, “Inhibition of carbon steel corrosion by 4-vinylbenzyl triphenyl phosphonium chloride in HCl solution,” Anti-Corrosion Methods and Materials, vol. 55, no. 4, pp. 217–224, 2008.
[38]  S. N. Raicheva, B. V. Aleksiev, and E. I. Sokolova, “The effect of the chemical structure of some nitrogen- and sulphur-containing organic compounds on their corrosion inhibiting action,” Corrosion Science, vol. 34, no. 2, pp. 343–350, 1993.
[39]  S. H. Sanad, A. A. Ismail, and A. A. El-Meligi, “The effect of temperature on the corrosion and corrosion inhibition of steel alloys in hydrochloric acid solutions,” Bulletin of Electrochemistry, vol. 11, no. 10, pp. 462–469, 1995.
[40]  F. Zucchi, G. Trabanelli, and G. Brunoro, “The influence of the chromium content on the inhibitive efficiency of some organic compounds,” Corrosion Science, vol. 33, no. 7, pp. 1135–1139, 1992.
[41]  Y. L. Huang, C. N. Cao, M. Lu, and H. C. Lin, “Inhibition effects of I- and I2 on stress corrosion cracking of stainless steel in acidic chloride solutions,” Corrosion, vol. 49, no. 8, pp. 644–649, 1993.
[42]  A. Popova, M. Christov, and T. Deligeorgiev, “Influence of the molecular structure on the inhibitor properties of benzimidazole derivatives on mild steel corrosion in 1 M hydrochloric acid,” Corrosion, vol. 59, no. 9, pp. 756–764, 2003.
[43]  A. Popova, E. Sokolova, S. Raicheva, and M. Christov, “AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives,” Corrosion Science, vol. 45, no. 1, pp. 33–58, 2003.
[44]  M. Yamaguchi and H. Nishihara, “The inhibitive effect of organic cations on passive film breakdown of iron in a chloride-containing borate buffer solution,” Corrosion Science, vol. 36, no. 7, pp. 1133–1141, 1994.
[45]  A. S. Fouda, A. Abd El-Aal, and A. B. Kandil, “The effect of some phthalimide derivatives on the corrosion behaviour of copper in nitric acid,” Anti-Corrosion Methods and Materials, vol. 52, no. 2, pp. 96–101, 2005.
[46]  K. Kobayashi, K. Shimizu, and M. Iida, “Structural effects of organic compounds as corrosion inhibitors for hydrogen entry into iron in sulphuric acid,” Corrosion Science, vol. 35, no. 5-8, pp. 1431–1435, 1993.
[47]  L. D. Skryler, E. A. Streltsova, and T. L. Skryleva, “Hydrocarbon chain length and their effect on corrosion inhibition by alkylammonium chlorides,” Protection of Metals USSR, vol. 27, no. 6, pp. 755–758, 1991.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal