All Title Author
Keywords Abstract


Regularity of Global Attractors for the Kirchhoff Wave Equation

DOI: 10.4236/jamp.2019.710168, PP. 2481-2491

Keywords: The Kirchhoff Wave Equation, Critical Exponent, The Regularity of Global Attractor

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we mainly use operator decomposition technique to prove the global attractors which in \"\"?for the Kirchhoff wave equation with strong damping and critical nonlinearities, are also bounded in \"\".

References

[1]  Kirchhoff, G. (1883) Vorlesungen ber Mechanik. Teubner, Stuttgart.
[2]  Duvaut, G. and Lions, J.L. (1976) Inequalities in Mechanics and Physics. Springer-Verlag, Berlin, New York.
https://doi.org/10.1007/978-3-642-66165-5
[3]  DellOro, F. and Pata, V. (2011) Long-Term Analysis of Strongly Damped Nonlinear Wave Equations. Nonlinearity, 24, 3413-3435.
https://doi.org/10.1088/0951-7715/24/12/006
[4]  DellOro, F. (2013) Global Attractors for Strongly Damped Wave Equations with Subcritical-Critical Nonlinearities. Communications on Pure & Applied Analysis, 12, 1015-1027.
https://doi.org/10.3934/cpaa.2013.12.1015
[5]  DellOro, F. and Pata, V. (2012) Strongly Damped Wave Equations with Critical Nonlinearities. Nonlinear Analysis, 75, 5723-5735.
https://doi.org/10.1016/j.na.2012.05.019
[6]  Yang, Z.J. and Liu, Z.M. (2017) Global Attractor for a Strongly Damped Wave Equation with Fully Supercritical Nonlinearities. Discrete & Continuous Dynamical Systems, 37, 2181-2205.
https://doi.org/10.3934/dcds.2017094
[7]  Chueshov, I. (2012) Long-Time Dynamics of Kirchhoff Wave Models with Strong Nonlinear Damping. Journal of Differential Equations, 252, 1229-1262.
https://doi.org/10.1016/j.jde.2011.08.022
[8]  Ding, P.Y., Yang, Z.J. and Li, Y. (2018) Global Attractor of the Kirchhoff Wave Models with Strong Nonlinear Damping. Applied Mathematics Letters, 76, 40-45.
https://doi.org/10.1016/j.aml.2017.07.008
[9]  Ma, H.L. and Zhong, C.K. (2017) Attractors for the Kirchhoff Equations with Strong Nonlinear Damping. Applied Mathematics Letters, 74, 127-133.
https://doi.org/10.1016/j.aml.2017.06.002
[10]  Nakao, M. (2009) An Attractor for a Nonlinear Dissipative Wave Equation of Kirchhoff Type. Journal of Mathematical Analysis and Applications, 353, 652-659.
https://doi.org/10.1016/j.jmaa.2008.09.010
[11]  Wang, Y.H. and Zhong, C.K. (2013) Upper Semicontinuity of Pullback Attractors for Nonautonomous Kirchhoff Wave Models. Discrete & Continuous Dynamical Systems, 33, 3189-3209.
https://doi.org/10.3934/dcds.2013.33.3189
[12]  Yang, Z.J. and Wang, Y.Q. (2010) Global Attractor for the Kirchhoff Type Equation with a Strong Dissipation. Journal of Differential Equations, 249, 3258-3278.
https://doi.org/10.1016/j.jde.2010.09.007
[13]  Yang, Z.J. and Da, F. (2019) Stability of Attractors for the Kirchhoff Wave Equation with Strong Damping and Critical Nonlinearities. Journal of Mathematical Analysis and Applications, 469, 298-320.
https://doi.org/10.1016/j.jmaa.2018.09.012
[14]  Bae, J.J. and Nakao, M. (2004) Existence Problem of Global Solutions of the Kirchhoff Type Wave Equations with a Localized Weakly Nonlinear Dissipation in Exterior Domains. Discrete & Continuous Dynamical Systems, 11, 731-743.
https://doi.org/10.3934/dcds.2004.11.731
[15]  Nishihara, K. (1993) Decay Properties of Solutions of Some Quasilinear Hyperbolic Equations with Strong Damping. Nonlinear Analysis, 21, 17-21.
https://doi.org/10.1016/0362-546X(93)90174-Q
[16]  Ono, K. (2011) On Decay Properties of Solutions for Degenerate Strongly Damped Wave Equations of Kirchhoff Type. Journal of Mathematical Analysis and Applications, 381, 229-239.
https://doi.org/10.1016/j.jmaa.2011.03.034
[17]  Ono, K. (1997) Global Existence, Decay, and Blowup of Solutions for Some Mildly Degenerate Nonlinear Kirchhoff Strings. Journal of Differential Equations, 137, 273-301.
https://doi.org/10.1006/jdeq.1997.3263
[18]  Cavalcanti, M.M., Cavalcanti, V.N.D., Filho, J.S.P. and Soriano, J.A. (1998) Existence and Exponential Decay for a Kirchhoff-Carrier Model with Viscosity. Journal of Mathematical Analysis and Applications, 226, 40-60.
https://doi.org/10.1006/jmaa.1998.6057
[19]  Ghisi, M. (2006) Global Solutions for Dissipative Kirchhoff Strings with Non-Lipschitz Nonlinear Term. Journal of Differential Equations, 230, 128-139.
https://doi.org/10.1016/j.jde.2006.07.020
[20]  Ghisi, M. (2016) Kirchhoff Equations with Strong Damping. Journal of Evolution Equations, 16, 441-482.
https://doi.org/10.1007/s00028-015-0308-0
[21]  Ancona, P.D. and Spagnolo, S. (1994) Nonlinear Perturbations of the Kirchhoff Equation. Communications on Pure and Applied Mathematics, 47, 1005-1024.
https://doi.org/10.1002/cpa.3160470705
[22]  Matsuyama, T. and Ikehata, R. (1996) On Global Solution and Energy Decay for the Wave Equation of Kirchhoff Type with Nonlinear Damping Term. Journal of Mathematical Analysis and Applications, 204, 729-753.
https://doi.org/10.1006/jmaa.1996.0464
[23]  Mizumachi, T. (1998) Time Decay of Solutions for Degenerate Kirchhoff Equation. Nonlinear Analysis, 33, 235-252.
https://doi.org/10.1016/S0362-546X(97)00540-3
[24]  Temam, R. (1997) Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York.
https://doi.org/10.1007/978-1-4612-0645-3
[25]  Conti, M. and Pata, V. (2009) On the Regularity of Global Attractors. Discrete & Continuous Dynamical Systems, 25, 1209-1217.
https://doi.org/10.3934/dcds.2009.25.1209

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal