All Title Author
Keywords Abstract

-  2018 

Hom-Jordan李代数的交换扩张
Abelian extensions of Hom-Jordan Lie algebras

DOI: 10.6040/j.issn.1671-9352.0.2018.059

Keywords: Hom-Jordan李代数,表示,2-上圈,交换扩张,
Hom-Jordan Lie algebra
,representation,2-cocycle,abelian extension

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 通过Hom-Jordan李代数T的表示,得到构造Hom-Jordan李代数T⊕V的充分必要条件。证明了Hom-Jordan李代数的等价交换扩张给出相同的表示。通过交换扩张的截面得到一个2-上圈。
Abstract: Using representations of Hom-Jordan Lie algebras T, the sufficient and necessary conditions of constructing Hom-Jordan Lie algebra T⊕V are obtained. The equivalent abelian extensions of Hom-Jordan Lie algebras giving the same representation is proved. A 2-cocycle by a section of the abelian extension is obtained

References

[1]  HARTWIG J, LARSSON D, SILVESTROV S. Deformations of Lie algebras using <i>σ</i>-derivations[J]. Journal of Algebra, 2006, 295(2):314-361.
[2]  LARSSON D, SILVESTROV S. Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities[J]. Journal of Algebra, 2005, 288(2):321-344.
[3]  MA Lili, CHEN Liangyun, ZHAO Jun. δ-Hom-Jordan Lie superalgebras[J]. Communications in Algebra, 2018, 46(4):1668-1697.
[4]  ZHAO Jun, CHEN Liangyun, MA Lili. Representations and <i>T</i><sup>*</sup>-extensions of Hom-Jordan-Lie algebras[J]. Communications in Algebra, 2016, 44(7):2786-2812.
[5]  OKUBO S, KAMIYA N. Jordan-Lie superalgebra and Jordan-Lie triple system[J]. Journal of Algebra, 1997, 198(2):388-411.
[6]  SHENG Yunhe. Representations of Hom-Lie algebras[J]. Algebras and Representation Theory, 2012, 15(6):1081-1098.
[7]  LIU Yan, CHEN Liangyun, MA Yao. Hom-Nijienhuis operators and <i>T</i><sup>*</sup>-extensions of Hom-Lie superalgebras[J]. Linear Algebra and its Applications, 2013, 439(7):2131-2144.
[8]  ABDAOUI K, AMMAR F, MAKHLOUF A. Constructions and cohomology of Hom-Lie color algebras[J]. Communications in Algebra, 2015, 43(11):4581-4612.
[9]  QIAN Ling, ZHOU Jia, CHEN Liangyun. Engel theorem of Jordan Lie algebra and its applications[J]. Chinese Annals of Mathematics Series A, 2012, 33A(5):517-526.

Full-Text

comments powered by Disqus