All Title Author
Keywords Abstract


Growth and Photosynthetic Pigments of Cotton Cultivars Irrigated with Saline Water

DOI: 10.4236/as.2019.101007, PP. 81-91

Keywords: Gossypium hirsutum L., Salinity, Chlorophyll

Full-Text   Cite this paper   Add to My Lib

Abstract:

The cultivation of cotton is a relevant socioeconomic activity in the Brazilian agricultural scenario. In the Brazilian Northeast, however, production is limited by low rainfall, requiring water supplementation, a problem for the cotton cultivation practiced in the semi-arid region, due to the presence of saline ions in several water sources, from where the water is used for irrigation. It is necessary to identify cultivars that better tolerate saline stress in order to provide subsidies for their cultivation under such conditions. In this sense, the objective was to evaluate the tolerance of cotton cultivars to salinity. The experiment was conducted in a greenhouse, belonging to the Natural Resource Technology Center of the Federal University of Campina Grande, Campus I, Campina Grande, Brazil, in a completely randomized design in a 2 × 5 factorial scheme, with four replications, totaling 40 experimental units (BRS 368 RF and BRS SAFIRA) submitted to five saline levels (1.5, 3.0, 4.5, 6.0 and 7.5 dS·mˉ1). Irrigation with water saline of EC from 1.5 dS·mˉ1 affects adversely the growth of cotton cultivars, causing reductions in plant height, stem diameter, leaf area and number of leaves. Saline stress reduced the levels of the photosynthetic pigments of the cotton plants studied.

References

[1]  Oliveira, F.A., Medeiros, J.F., Oliveira, F.R.A., Freire, A.G. and Soares, L.C.S. (2012) Produção do algodoeiro em função da salinidade e tratamento de sementes com regulador de crescimento. Revista Ciência Agronômica, 43, 279-287.
https://doi.org/10.1590/S1806-66902012000200010
[2]  IBGE (2017) Instituto Brasileiro de Geografia e Estatística.
http://agenciadenoticias,ibge.gov.br/2013-agencia-de-noticias/releases/9736-em-dezembro-ibge-preve-safra-16-1-maior-para-2017 qr
[3]  Cavalcante, A.C.P., Diniz, B.L.M.T., Silva, A.G., Diniz Neto, M.A., Oliveira, D.S. and Cavalcante, A.P. (2015) Crescimento, produção e características tecnológicas da fibra de algodão colorido em diferentes coberturas no solo. Agropecuária Técnica, 36, 240-247.
[4]  Jácome, A.G., Oliveira, R.H., Fernandes, P.D. and Gonçalves, A.C.A. (2003) Comportamento produtivo de genótipos de algodão sob condições salinas. Acta Scientiarum Agronomy, 25, 187-194.
https://doi.org/10.4025/actasciagron.v25i1.2669
[5]  Rhoades, J., Kandiah, A. and Mashali, A.M. (2000) Uso de águas salinas para produção agrícola. UFPB, Campina Grande, 117.
[6]  Nobre, R.G., Lima, G.S., Gheyi, H.R., Lourenço, G.S. and Soares, L.A.A. (2013) Emergência, Crescimento e produção da mamoneira sob estresse salino e adubação nitrogenada. Revista Ciência Agronômica, 44, 76-85.
https://doi.org/10.1590/S1806-66902013000100010
[7]  Pedrotti, A., Chagas, R.M., Ramos, V.C., Prata, A.P.M., Lucas, A.A.T. and Santos, P.B. (2015) Causas e consequências do processo de salinização dos solos. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 19, 1308-1324.
[8]  Nunkaewa, T., Kantachote, D., Kanzaki, H., Nitoda, T. and Ritchie, R.J. (2014) Effects of 5-Aminolevulinic Acid (ALA)-Containing Supernatants from Selected Rhodopseudomonas palustris on Rice Growth under NaCl Stress, with Mediating Effects on Chlorophyll, Photosynthetic Electron Transport and Antioxidative Enzymes. Electronic Journal of Biotechnology, 17, 19-26.
https://doi.org/10.1016/j.ejbt.2013.12.004
[9]  Graciano, E.S.A., Rejane, J.M.C., Nogueira, R.J.M.C., Lima, D.R.M., Pacheco, C.M. and Santos, S.R.C. (2011) Crescimento e capacidade fotossintética da cultivar de amendoim BR 1 sob condições de salinidade. Revista Brasileira de Engenharia Agrícola e Ambiental, 15, 794-800.
https://doi.org/10.1590/S1415-43662011000800005
[10]  Qiu, Z.B., Guo, J., Jhu, A.J., Zhang, L. and Zhang, M.M. (2014) Exogenous Jasmonic Acid Can Enhance Tolerance of Wheat Seedlings to Salt Stress. Ecotoxicology and vironmental Safety, 104, 202-208.
https://doi.org/10.1016/j.ecoenv.2014.03.014
[11]  Strasser, R.J., Srivastava, A. and Tsimilli-Michael, M. (2000) The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples. In: Yunus, M., Ed., Probing Photosynthesis: Mechanisms, Regulation and Adaptation, Taylor and Francis, London, 445-483.
[12]  Martinazzo, E.G., Perboni, A.T., Oliveira, P.V., Bianchi, V.J. and Bacarin, M.A. (2015) Atividade fotossintética em plantas de ameixeira submetidas ao déficit hídrico e ao alagamento. Ciência Rural, 43, 35-41.
https://doi.org/10.1590/S0103-84782012005000126
[13]  Donagema, K.D., Campos, D.V.B., Calderano, S.B., Teixeira, W.G. and Viana, J.H.M. (2011) Manual de métodos de análise de solo. 2nd Edition, Embrapa Solos, Rio de Janeiro, RJ.
[14]  Ayers, R.S. and Westcot, D.W. (1999) A qualidade da água na agricultura. UFPB, Campina Grande, 218.
[15]  Novais, R.F., Neves, J.C.L. and Barros, N.F. (1991) Ensaio em ambiente controlado. In: Oliveira, A.J., Ed., Métodos de pesquisa em fertilidade do solo, 1st Edition, Embrapa SEA, Brasília, 189-253.
[16]  Grimes, D.W. and Carter, L.M. (1969) A Linear Rule for Direct Nondestructive Leaf área Measurements. Agronomy Journal, 3, 477-479.
https://doi.org/10.2134/agronj1969.00021962006100030048x
[17]  Arnon, D.I. (1949) Copper Enzimes in Isolated Chloroplasts. Polyphenoloxidases in Beta Vulgaris. Plant Physiology, 24, 1-15.
https://doi.org/10.1104/pp.24.1.1
[18]  Lichtenthaler, H.K. (1987) Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In: Packer, L. and Douce, R., Eds. Methods in Enzimology, Academic Press, London, 148, 350-381.
[19]  Hendry, G.A.F. and Price, A.H. (1993) Stress Indicators: Chlorophylls and Carotenoids. In: Hendry, G.A.F. and Grime, J.P., Eds., Methods in Comparative Plant Ecology, Chapman & Hall, London, 148-152.
https://doi.org/10.1007/978-94-011-1494-3
[20]  Ferreira, D.F. (2014) Sisvar: A Guide for Its Bootstrap Procedures in Multiple Comparisons. Ciência Agrotecnica, 38, 109-112.
https://doi.org/10.1590/S1413-70542014000200001
[21]  Lima, G.S., Nobre, R.G., Gheyi, H.R., Soares, L.A.A., Pinheiro, F.W.A. and Dias, A.S. (2015) Crescimento, teor de sódio, cloro e relação iônica na mamoneira sob estresse salino e adubação nitrogenada. Comunicata Scientiae, 6, 212-223.
[22]  Lima, G.S., Dias, A.S., Soares, L.A.A., Gheyi, H.R., Camara Neto, J.P. and Oliveira, L.D. (2017) Cultivation of CNPA G3 Sesame Irrigated with Saline Water and Fertilized with Nitrate-N and Ammonium-N. Revista Brasileira de Engenharia Agrícola e Ambiental, 21, 14-20.
https://doi.org/10.1590/1807-1929/agriambi.v21n1p14-20
[23]  Nascimento, S.P., Bastos, E.A., Araujo, E.C.E., Freire Filho, R.R. and Silva, E.M. (2011) Tolerance to Water Deficit of Cowpea Genotypes. Brasileira de Engenharia Agrícola e Ambiental, 15, 853-860.
https://doi.org/10.1590/S1415-43662011000800013
[24]  Santos, J.B., Gheyi, H.R., Lima, G.S., Xavier, D.A., Cavalcante, L.F. and Centeno, C.R.M. (2016) Morfofisiologia e produção do algodoeiro herbáceo irrigado com águas salinas e adubado com nitrogênio. Comunicata Scientiae, 7, 86-96.
https://doi.org/10.14295/cs.v7i1.1158
[25]  Dias, A.S., Lima, G.S., Gheyi, H.R., Soares, L.A.A., Souza, L.P. and Bezerra, I.L. (2017) Crescimento do algodoeiro “BRS RUBI” em função da irrigação com águas salinas e adubação nitrogenada. Revista Brasileira de Agricultura Irrigada, 11, 1945-1955.
https://doi.org/10.7127/rbai.v11n700660
[26]  Lopes, K.P. and Silva, M. (2010) Salinidade na germinação de sementes de algodão colorido. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 5, 274-279.
[27]  Munns, R. and Tester, M. (2008) Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59, 651-681.
https://doi.org/10.1146/annurev.arplant.59.032607.092911

Full-Text

comments powered by Disqus