All Title Author
Keywords Abstract


Abdominal Fat Reduction through Cryolipolysis

DOI: 10.4236/jbm.2018.69005, PP. 44-52

Keywords: Visceral Adipose Tissue, Subcutaneous Adipose Tissue, Cryolipolysis, Body Contour, Weight

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although several studies showed the efficacy and safety from this procedure, the comparative assessment of adipose tissue by cryolipolysis has not been studied until now. Therefore we investigated the quantitative change of cross sectional areas of abdominal SAT (subcutaneous adipose tissue) and VAT (visceral adipose tissue) following cryolipolysis. A prospective study for twelve subjects with a single session of cryolipolysis on abdomen was performed. We assessed for their height, weight, and waist circumferences, body contours by photographs, and the cross sectional areas of visceral and subcutaneous adipose tissues were measured at umbilicus level by computerized tomography for 2 months. The cross sectional areas in SAT reduced from 243.3 ± 24.7 to 238.5 ± 40.7 cm2 at 2 months post-treatment. Those of VAT reduced from 141.3 ± 46.4 to 125.1 ± 42.8 cm2 at 2 months post-treatment. Cross sectional areas of VAT, and waist circumferences were significantly reduced by 16.2 cm2, 4.1 cm respectively. Additionally visual improvement without unexpected adverse events was noted. In conclusion a single session cryolipolysis demonstrated to reduce visceral adipose tissue as well as waist circumferences tissue for 2 months. Further controlled study would be needed to evaluate for reduction of visceral adipose tissue by cryolipolysis.

References

[1]  Berry, M.G. and Davies, D. (2010) Liposuction: A Review of Principles and Techniques. Journal of Plastic, Reconstructive & Aesthetic Surgery, 64, 985-992.
https://doi.org/10.1016/j.bjps.2010.11.018
[2]  Bellini, E., Grieco, M.P. and Raposio, E. (2017) A Journey through Liposuction and Liposculture: Review. Annals of Medicine and Surgery, 24, 53-60.
https://doi.org/10.1016/j.amsu.2017.10.024
[3]  Klein, S., Fontana, L., Young, V.L., et al. (2004) Absence of an Effect of Liposuction on Insulin Action and Risk Factors for Coronary Heart Disease. The New England Journal of Medicine, 350, 2549-2557.
[4]  Avram, M.M. and Harry, R.S. (2009) CryolipolysisTM for Subcutaneous Fat Layer Reduction. Lasers in Surgery and Medicine, 41, 703-708.
https://doi.org/10.1002/lsm.20864
[5]  Stewart, K.J., Stewart, D.A., Coghlan, B., Harrison, D.H., Jones, B.M. and Waterhouse, N. (2006) Complications of 278 Consecutive Abdominoplasties. Journal of Plastic, Reconstructive & Aesthetic Surgery, 59, 1152-1155.
https://doi.org/10.1016/j.bjps.2005.12.060
[6]  Epstein Jr., E.H. and Oren, M.E. (1970) Popsicle Panniculitis. The New England Journal of Medicine, 282, 966-967.
https://doi.org/10.1056/NEJM197004232821709
[7]  Karow Jr., A.M. and Webb, W.R. (1965) Tissue Freezing. A Theory for Injury and Survival. Cryobiology, 2, 99-108.
https://doi.org/10.1016/S0011-2240(65)80094-3
[8]  Beacham, B.E., Cooper, P.H., Buchanan, C.S. and Weary, P.E. (1980) Equestrian Cold Panniculitis in Women. Archives of Dermatology, 116, 1025-1027.
https://doi.org/10.1001/archderm.1980.01640330063014
[9]  Manstein, D., Laubach, H., Watanabe, K., Farinelli, W., Zurakowski, D. and Anderson, R.R. (2008) Selective Cryolipolysis: A Novel Method of Non-Invasive Fat Removal. Lasers in Surgery and Medicine, 40, 595-604.
https://doi.org/10.1002/lsm.20719
[10]  Coleman, S.R., Sachdeva, K., Egbert, B.M., Preciado, J. and Allison, J. (2009) Clinical Efficacy of Noninvasive Cryolipolysis and Its Effects on Peripheral Nerves. Aesthetic Plastic Surgery, 33, 482-488.
https://doi.org/10.1007/s00266-008-9286-8
[11]  Zelickson, B., Egbert, B.M., Preciado, J., Allison, J., Springer, K., Rhoades, R.W. and Manstein, D. (2009) Cryolipolysis for Noninvasive Fat Cell Destruction: Initial Results from a Pig Model. Dermatologic Surgery, 35, 1462-1470.
https://doi.org/10.1111/j.1524-4725.2009.01259.x
[12]  Lee, K.R. (2013) Clinical Efficacy of Fat Reduction on the Thigh of Korean Women through Cryolipolysis. Journal of Obesity & Weight Loss Therapy, 3, 1-5.
[13]  Faul, F., Erdfelder, E., Buchner, A. and Lang, A.-G. (2013) G*Power Version 3.1.7 (Computer Software). Universitat Kiel, Kiel.
[14]  http://www.statcan.gc.ca/pub/82-003-x/2012003/article/11707/c-g/fig1-eng.htm
[15]  Jalian, H., Avram, M.M., Garibyan, L., Mihm, M.C. and Anderson, R. (2014) Paradoxical Adipose Hyperplasia after Cryolipolysis. JAMA Dermatology, 150, 317-319.
https://doi.org/10.1001/jamadermatol.2013.8071
[16]  Hu, F. (2008) Measurements of Adiposity and Body Composition. In: Hu, F.B., Ed., Obesity Epidemiology, Oxford University Press, New York, 53-83.
https://doi.org/10.1093/acprof:oso/9780195312911.003.0005
[17]  Meyer, P.F., da Silva, R.M., Oliveira, G., Tavares, M.A., Medeiros, M.L., Andrada, C.P. and Neto, L.G. (2016) Effects of Cryolipolysis on Abdominal Adiposity. Case Reports in Dermatological Medicine, 2016, Article ID: 6052194.
[18]  Ferraro, G.A., De Francesco, F., Cataldo, C., Rossano, F., Nicoletti, G. and D’Andrea, F. (2012) Synergistic Effects of Cryolipolysis and Shock Waves for Noninvasive Body Contouring. Aesthetic Plastic Surgery, 36, 666-679.
https://doi.org/10.1007/s00266-011-9832-7
[19]  Riopelle, J.T. and Kovach, B. (2009) Lipid and Liver Function Effects of the Cryolipolysis Procedure in a Study of Male Love Handle Reduction. Lasers in Surgery and Medicine, 82.
[20]  Sajjadi, A.Y., Manstein, D. and Carp, S.A. (2017) Measuring Temperature Induced Phase Change Kinetics in Subcutaneous Adipose Tissues Using near Infrared Spectroscopy, MR Imaging and Spectroscopy and OCT. Scientific Reports, 7, Article No. 17786.
[21]  Shek, S., Chan, N. and Chan, H. (2012) Non-Invasive Cryolipolysis for Body Contouring in Chinese—A First Commercial Experience. Lasers in Surgery and Medicine, 44, 125-130.
https://doi.org/10.1002/lsm.21145
[22]  Sun, Z., Yang, Y. and Liu, J. (2013) Alternative Cooling and Heating as a Novel Minimally Invasive Approach for Treating Obesity. International Journal of Thermal Sciences, 64, 29-39.
https://doi.org/10.1016/j.ijthermalsci.2012.08.003

Full-Text

comments powered by Disqus