All Title Author
Keywords Abstract


The Linear Formulation of Thermal Unit Commitment Problem with Uncertainties through a Computational Mixed Integer

DOI: 10.4236/jpee.2018.66001, PP. 1-15

Keywords: Thermal Generating Unit, MILP (Mixed Integer Linear Programming), Unit Commitment

Full-Text   Cite this paper   Add to My Lib

Abstract:

The solar and wind renewable energy is developing very rapidly to fulfill the energy gap. This specific increasing share of renewable energy is a reaction to the ecological trepidations to conciliate economics with security due to the new challenges in power system supply. In solar and wind renewable energy, the only partially predictable is the output with very low controllability which creates unit commitment problems in thermal units. In this research paper, a different linear formulation via mixed integer is presented that only requires “binary variables” and restraints concerning earlier stated models. The framework of this model allows precisely the costs of time-dependent startup & intertemporal limitations, for example, minimum up & down times and a ramping limit. To solve the unit commitment problem efficiently, a commercially available linear programming of mixed-integer is applied for sizeable practical scale. The results of the simulation are shown in conclusions.

References

[1]  Wood, A.J. and Wollenberg, B. (1996) Power Generation Operation and Control. 2nd Edition, In Fuel and Energy Abstracts, Vol. 37, No. 3, p. 195. Elsevier.
[2]  Mohammad, S., Hatim, Y. and Li, Z.Y. (2002) Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management.
[3]  Remedying Undue Discrimination Through Open Access Transmission Service and Standard Electricity Market Design, Notice of Proposed Rulemaking, Docket No. RM01-12-000, Federal Energy Regulatory Commission, Jul. 2002.
http://www.ferc.gov/
[4]  Snyder, W.L., Powell, H.D. and Rayburn, J.C. (1987) Dynamic Programming Approach to Unit Commitment. IEEE Transactions on Power Systems, 2, 339-348.
https://doi.org/10.1109/TPWRS.1987.4335130
[5]  Hobbs, W.J., Hermon, G., Warner, S. and Shelbe, G.B. (1988) An Enhanced Dynamic Programming Approach for Unit Commitment. IEEE Transactions on Power systems, 3, 1201-1205.
https://doi.org/10.1109/59.14582
[6]  Ouyang, Z. and Shahidehpour, S.M. (1991) An Intelligent Dynamic Programming for Unit Commitment Application. IEEE Transactions on Power Systems, 6, 1203-1209.
https://doi.org/10.1109/59.119267
[7]  Lee, F.N. (1988) Short-Term Thermal Unit Commitment—A New Method. IEEE Transactions on Power Systems, 3, 421-428.
https://doi.org/10.1109/59.192892
[8]  Li, C.-A., Johnson, R.B. and Svoboda, A.J. (1997) A New Unit Commitment Method. IEEE Transactions on Power Systems, 12, 113-119.
https://doi.org/10.1109/59.574930
[9]  Senjyu, T., Shimabukuro, K., Uezato, K. and Funabashi, T. (2003) A Fast Technique for Unit Commitment Problem by Extended Priority List. IEEE Transactions on Power Systems, 18, 882-888.
https://doi.org/10.1109/TPWRS.2003.811000
[10]  Chang, W.P. and Luo, X.J. (2008) A Solution to the Unit Commitment Using Hybrid Genetic Algorithm. In TENCON 2008—2008 IEEE Region 10 Conference, Hyderabad, 19-21 November 2008, 1-6.
https://doi.org/10.1109/TENCON.2008.4766718
[11]  Dillon, T.S., Edwin, K.W., Kochs, H.-D. and Taud, R.J. (1978) Integer Programming Approach to the Problem of Optimal Unit Commitment with Probabilistic Reserve Determination. IEEE Transactions on Power Apparatus and Systems, 6, 2154-2166.
https://doi.org/10.1109/TPAS.1978.354719
[12]  Medina, J., Quintana, V.H. and Conejo, A.J. (1999) A Clipping-Off Interior-Point Technique for Medium-Term Hydro-Thermal Coordination. IEEE Transactions on Power Systems, 14, 266-273.
https://doi.org/10.1109/59.744542
[13]  Carrión, M. and Arroyo, J.M. (2006) A Computationally Efficient Mixed-Integer Linear Formulation for the Thermal Unit Commitment Problem. IEEE Transactions on Power Systems, 21, 1371-1378.
https://doi.org/10.1109/TPWRS.2006.876672
[14]  Xie, J., Zhong, J., Li, Z. and Gan, D. (2011) Environmental-Economic Unit Commitment Using Mixed-Integer Linear Programming. International Transactions on Electrical Energy Systems, 21, 772-786.
https://doi.org/10.1002/etep.476
[15]  Guerrero-Mestre, V. and Contreras, J. (2016) Stochastic Unit Commitment Considering Start-Up and Shut-Down Trajectories. IEEE Power and Energy Society General Meeting (PESGM), Boston, 17-21 July 2016, 1-5.
https://doi.org/10.1109/PESGM.2016.7741655
[16]  Zhuang, F. and Galiana, F.D. (1990) Unit Commitment by Simulated Annealing. IEEE Transactions on Power Systems, 5, 311-318.
https://doi.org/10.1109/59.49122
[17]  Mantawy, A.H., Youssef, L., Abdel-Magid, Y.L. and Selim, S.Z. (1998) A Simulated Annealing Algorithm for Unit Commitment. IEEE Transactions on Power Systems, 13, 197-204.
https://doi.org/10.1109/59.651636
[18]  Merlin, A. and Sandrin, P. (1983) A New Method for Unit Commitment at Electricite De France. IEEE Transactions on Power Apparatus and Systems, 5, 1218-1225.
https://doi.org/10.1109/TPAS.1983.318063
[19]  Ongsakul, W. and Petcharaks, N. (2004) Unit Commitment by Enhanced Adaptive Lagrangian Relaxation. IEEE Transactions on Power Systems, 19, 620-628.
https://doi.org/10.1109/TPWRS.2003.820707
[20]  Kazarlis, S.A., Bakirtzis, A.G. and Petridis, V. (1996) A Genetic Algorithm Solution to the Unit Commitment Problem. IEEE Transactions on Power Systems, 11, 83-92.
https://doi.org/10.1109/59.485989
[21]  Nowak, M.P. and Romisch, W. (2000) Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty. Annals of Operations Research, 100, 251-272.
https://doi.org/10.1023/A:1019248506301
[22]  Arroyo, J.M. and Conejo, A.J. (2000) Optimal Response of a Thermal Unit to an Electricity Spot Market. IEEE Transactions on Power Systems, 15, 1098-1104.
https://doi.org/10.1109/59.871739
[23]  Svoboda, A.J., Tseng, C.-L., Li, C.-A. and Johnson, R.B. (1997) Short-Term Resource Scheduling with Ramp Constraints [Power Generation Scheduling]. IEEE Transactions on Power Systems, 12, 77-83.
https://doi.org/10.1109/59.574926
[24]  CPLEX, ILOG (2006).
http://www.ilog.com/products/cplex
[25]  Saunders, M.A., Murray, W. and Gill, P.E. (2002) MINOS: A Solver for Large-Scale Nonlinear Optimization Problems.

Full-Text

comments powered by Disqus