全部 标题 作者
关键词 摘要


Silica Aerogel as Super Thermal and Acoustic Insulation Materials

DOI: 10.4236/jep.2018.94020, PP. 295-308

Keywords: Silica Aerogels, Polymer Modified, High Flexible, Low Thermal Conductivity, Fly Ash, Bottom Ash, and Environmental Protection

Full-Text   Cite this paper   Add to My Lib

Abstract:

Silica aerogels are light weight, nanostructured, and highly porous materials with an open pore structure. Due to their excellent characteristics, such as extremely low thermal conductivity, low density and high porosity, the silica aerogels become promising potential adsorbents, catalysts, thermal insulation, and acoustic absorption materials for environmental purposes. This paper presents the synthesis of a highly flexible polymer modified silica aerogel with the use of a cellulose-methyltriethoxysilane (MTES) precursor in a two-step acid-base catalyzed sol-gel process. The physical properties of the resulting aerogels were characterized by thermogravimetry, scanning electron microscopy, nitrogen adsorption-desorption, contact angle, thermal conductivity measurements, compression testing and Fourier transform infrared spectroscopy. The fabricated aerogel exhibited high flexibility with a Young’s modulus of compression of 0.33 MPa and the density of 0.132 g/cm3. They were hydrophobic in nature and had low thermal conductivity. Preparation of aerogel with solid waste (fly ash/bottom ash) is also discussed. The preliminary results showed that the materials have great potential for environmental application, i.e. enhancement of solid waste recycling rate by converting waste to high value-added materials, super thermal and acoustic insulation materials in green building and removal of oil spilled into surface drainage.

References

[1]  Fricke, J. and Emmerling, A. (1992) Aerogels—Preparation, Properties, Applications. Structure and Bonding, 77, 37.
https://doi.org/10.1007/BFb0036965
[2]  Hrubesh, L.W. (1990) Aerogels: The World’s Lightest Solids. Chemistry & Industry, 17, 824.
[3]  Hüsing, N. and Schubert, U. (1998) Aerogels—Airy Materials: Chemistry, Structure, and Properties. Angewandte Chemie International Edition, 37, 22.
https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
[4]  Kistler, S.S. (1931) Coherent Expanded Aerogels and Jellies. Nature, 127, 741.
https://doi.org/10.1038/127741a0
[5]  Dorcheh, A.S. and Abbasi, M.H. (2008) Silica Aerogel; Synthesis, Properties and Characterization. Journal of Materials Processing Technology, 199, 10-26.
[6]  Brinker, C.J. and Scherer, G.W. (1990) The Physics and Chemistry of Sol-Gel Processing. In: Brinker, C.J. and Scherer, G.W., Eds., Sol-Gel Science, Academic Press, New York.
[7]  Schwertfeger, F. (1998) Innovative Heat Insulation with Aerogels. In: Future Special Science 2, Hoechst Magazine.
[8]  Herrmann, G., Iden, R. and Mielke, M. (1995) On the Way to Commercial Production of Silica Aerogel. Journal of Non-Crystalline Solids, 186, 380.
https://doi.org/10.1016/0022-3093(95)90076-4
[9]  Tyler, L.J. (1959) Improvements in or Relating to Silica Compositions. Dow Corning, GB 682574.
[10]  Tyler, L.J. (1962) Silica Powders. Dow Corning, US 3015645.
[11]  Jansen, M. and Zimmermann, A. (1997) Process for the Preparation of Xerogels. Hoechst, US 5647962.
[12]  Nicolaon, G.A. and Teichner, S.J. (1968) étude thermodynamique de l’adsorption d’argon et d’azote par les aérogels de silice. The Journal of Chemical Physics, 65, 1480.
https://doi.org/10.1051/jcp/1968651480
[13]  Teichner, S.J. (1972) Method of Preparing Inorganic Aerogels. US 3672833.
[14]  Davis, P.J., Brinker, C.J. and Smith, D.M. (1992) Pore Structure Evolution in Silica Gel during Aging/Drying I. Temporal and Thermal Aging. Journal of Non-Crystalline Solids, 142, 189.
https://doi.org/10.1016/S0022-3093(05)80025-0
[15]  Davis, P.J., Brinker, C.J., Smith, D.M. and Assink, R.A. (1992) Pore Structure Evolution in Silica Gel during Aging/Drying II. Effect of Pore Fluids. Journal of Non-Crystalline Solids, 142, 197.
https://doi.org/10.1016/S0022-3093(05)80026-2
[16]  Deshpande, R., Hua, D.W., Smith, D.M. and Brinker, C.J. (1992) Pore Structure Evolution in Silica Gel during Aging/Drying. III. Effects of Surface Tension. Journal of Non-Crystalline Solids, 144, 32-34.
https://doi.org/10.1016/S0022-3093(05)80380-1
[17]  Inada, M., Tsujimotoa, H., Eguchi, Y., Enomoto, N. and Hojo, J. (2005) Microwave-Assisted Zeolite Synthesis from Coal Fly Ash in Hydrothermal Process. Fuel, 84, 1482-1486.
https://doi.org/10.1016/j.fuel.2004.08.012
[18]  Motomura, H., Mita, N. and Suzuki, M. (2002) Silica Accumulation in Long-Lived Leaves of Sasa veitchii (Carrière) Rehder (Poaceae-Bambusoideae). Annals of Botany, 90, 149-152.
https://doi.org/10.1093/aob/mcf148
[19]  Lux, A., Luxova, M., Abe, J., Morita, S. and Inanaga, S. (2003) Silicification of Bamboo (Phyllostachys heterocycla Mitf.) Root and Leaf. Plant Soil, 255, 85-91.
https://doi.org/10.1023/A:1026157424794
[20]  Reynolds, J.G., Coronado, P.R. and Hrubesh, L.W. (2001) Hydrophobic Aerogels for Oil-Spill Cleanup? Intrinsic Absorbing Properties. Energy Sources, 23, 831-843.
https://doi.org/10.1080/00908310152125210
[21]  Tan, C., Fung, B., Newman, J. and Vu, C. (2001) Organic Aerogels with Very High Impact Strength. Advanced Materials, 13, 644-646.
[22]  Leventis, N., Sotiriou-Leventis, C., Zhang, G. and Rawashdeh, A. (2002) Nanoengineering Strong Silica Aerogels. Nano Letters, 2, 957-960.
https://doi.org/10.1021/nl025690e
[23]  Capadona, L., Meador, M., Alunni, A., Fabrizio, E., Vassilaras, P. and Leventis, N. (2006) Flexible, Low-Density Polymer Crosslinked Silica Aerogels. Polymer, 47, 5754-5761.
https://doi.org/10.1016/j.polymer.2006.05.073
[24]  Katti, A., Shimpi, N., Roy, S., Lu, H., Fabrizio, E., Dass, A., Capadona, L. and Leventis, N. (2006) Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-Linked Amine-Modified Silica Aerogels. Chemistry of Materials, 18, 285-296.
https://doi.org/10.1021/cm0513841
[25]  Nadargi, D., Latthe, S., Hirashima, H. and Rao, A. (2009) Studies on Rheological Properties of Methyltriethoxysilane (MTES) Based Flexible Superhydrophobic Silica Aerogels. Microporous and Mesoporous Materials, 117, 617-626.
https://doi.org/10.1016/j.micromeso.2008.08.025
[26]  Venkateswara Rao, A., Bhagat, S., Hirashima, H. and Pajonk, G. (2006) Synthesis of Flexible Silica Aerogels using Methyltrime-Thoxysilane (MTMS) Precursor. Journal of Colloid and Interface Science, 300, 279-285.
https://doi.org/10.1016/j.jcis.2006.03.044
[27]  Website of National Environment Agency, Singapore, 2017.
[28]  Cai, J., Kimura, S., Wada, M., Kuga, S. and Zhang, L. (2008) Cellulose Aerogels from Aqueous Alkali Hydroxide-Urea Solution. ChemSusChem, 1, 149-154.
https://doi.org/10.1002/cssc.200700039
[29]  Lu, X., Caps, R., Fricke, J., Alviso, C. and Pekala, R. (1995) Correlation between Structure and Thermal Conductivity of Organic Aerogels. Journal of Non-Crystalline Solids, 188, 226-234.
https://doi.org/10.1016/0022-3093(95)00191-3
[30]  Meador, M., Capadona, L., McCorkle, L., Papadopoulos, D. and Leventis, N. (2007) Structure-Property Relationships in Porous 3D Nanostructures as a Function of Preparation Conditions: Isocyanate Cross-Linked Silica Aerogels. Chemistry of Materials, 19, 2247-2260.
https://doi.org/10.1021/cm070102p
[31]  Gao, T., Jelle, B.P., Gustavsen, A. and Jacobsen, S. (2014) Aerogel-Incorporated Concrete: An Experimental Study. Construction and Building Materials, 52, 130-136.
https://doi.org/10.1016/j.conbuildmat.2013.10.100

Full-Text

comments powered by Disqus