All Title Author
Keywords Abstract


A Critical Study of the Elastic Properties and Stability of Heusler Compounds: Phase Change and Tetragonal X2YZ Compounds

DOI: 10.4236/jmp.2018.94050, PP. 775-805

Keywords: Elastic Constants, Elastic Stability, Tetragonal Heusler Compounds, Cubic Instability, Phase Transition

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present work, the elastic constants and derived properties of tetragonal Heusler compounds were calculated using the high accuracy of the full-potential linearized augmented plane wave (FPLAPW) method. To find the criteria required for an accurate calculation, the consequences of increasing the numbers of k-points and plane waves on the convergence of the calculated elastic constants were explored. Once accurate elastic constants were calculated, elastic anisotropies, sound velocities, Debye temperatures, malleability, and other measurable physical properties were determined for the studied systems. The elastic properties suggested metallic bonding with intermediate malleability, between brittle and ductile, for the studied Heusler compounds. To address the effect of off-stoichiometry on the mechanical properties, the virtual crystal approximation (VCA) was used to calculate the elastic constants. The results indicated that an extreme correlation exists between the anisotropy ratio and the stoichiometry of the Heusler compounds, especially in the case of Ni2MnGa. Metastable cubic Ni2MnGa exhibits a very high anisotropy (28) and hypothetical cubic Rh2FeSn violates the Born-Huang stability criteria in the L21 structure. The bulk moduli of the investigated tetragonal compounds do not vary much (130 ...190 GPa). The averaged values of the other elastic moduli are also rather similar, however, rather large differences are found for the elastic anisotropies of the compounds. These are reflected in very different spatial distributions of Young’s moduli when comparing the different compounds. The slowness surfaces of the compounds also differ considerably even though the average sound velocities are in the same order of magnitude (3.2 ... 3.6 km/s). The results demonstrate the importance of the elastic properties not only for purely tetragonal Heusler compounds but also for phase change materials that exhibit magnetic shape memory or magnetocaloric effects.

References

[1]  Graf, T., Felser, C. and Parkin, S.S.P. (2011) Progress in Solid State Chemistry, 39, 1.
https://doi.org/10.1016/j.progsolidstchem.2011.02.001
[2]  Winterlik, J., Fecher, G.H., Thomas, A. and Felser, C. (2009) Physical Review B, 79, Article ID: 064508.
https://doi.org/10.1103/PhysRevB.79.064508
[3]  van Hove, L. (1953) Physical Review, 89, 1189.
https://doi.org/10.1103/PhysRev.89.1189
[4]  Brown, P.J., Bargawi, A.Y., Crangle, J., Neumann, K.-U. and Ziebeck, K. (1999) Journal of Physics: Condensed Matter, 11, 4715.
https://doi.org/10.1088/0953-8984/11/24/312
[5]  Blum, C.G.F., Ouardi, S., Fecher, G.H., Balke, B., Kozina, X., Stryganyuk, G., Ueda, S., Kobayashi, K., Felser, C., Wurmehl, S. and Büchner, B. (2011) Applied Physics Letters, 98, Article ID: 252501.
https://doi.org/10.1063/1.3600663
[6]  Winterlik, J., Balke, B., Fecher, G.H., Felser, C., Alves, M.C.M., Bernardi, F. and Morais, J. (2008) Physical Review B, 77, Article ID: 054406.
https://doi.org/10.1103/PhysRevB.77.054406
[7]  Krén, E. and Kádár, G. (1970) Solid State Communications, 8, 1653-1655.
https://doi.org/10.1016/0038-1098(70)90484-9
[8]  Wu, F., Mizukami, S., Watanabe, D., Naganuma, H., Oogane, M., Ando, Y. and Miyazaki, T. (2009) Applied Physics Letters, 94, Article ID: 122503.
https://doi.org/10.1063/1.3108085
[9]  Wu, F., Mizukami, S., Watanabe, D., Sajitha, E.P., Naganuma, H. and Oogane, M. (2010) IEEE Transactions on Magnetics, 46, 1863-1865.
https://doi.org/10.1109/TMAG.2010.2045108
[10]  Zhukov, A. (Ed.) (2016) Novel Functional Magnetic Materials: Fundamentals and Applications. In: Springer Series in Material Science, Volume 231, Springer Verlag, Berlin, Heidelberg, New York.
[11]  Gilleßen, M. and Dronskowski, R. (2010) Journal of Computational Chemistry, 31, 612.
[12]  Gilman, J.J. (2009) Chemistry and Physics of Mechanical Hardness. Johns Wiley and Sons, Inc., Hoboken, New Jersey.
https://doi.org/10.1002/9780470446836
[13]  Gilman, J.J. (2001) Electronic Basis of the Strength of Materials. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511541247
[14]  Sen, K.D. (Ed.) (1997) Chemical Hardness. In: Structure and Bonding, Volume 80, Springer Verlag, Berlin Heidelberg New York.
[15]  Bruls, G., Wolf, B., Finsterbusch, D., Thalmeier, P., Kouroudis, I., Sun, W., Assmus, W., Lüthi, B., Lang, M., Gloos, K., Steglich, F. and Modler, R. (1994) Physical Review Letters, 72, 1754.
https://doi.org/10.1103/PhysRevLett.72.1754
[16]  Ledbetter, H.M., Kim, S.A., Goldfarb, R.B. and Togano, K. (1989) Physical Review B, 39, 9689.
https://doi.org/10.1103/PhysRevB.39.9689
[17]  Gilman, J.J. (1960) Australian Journal of Physics, 13, 327-346.
https://doi.org/10.1071/PH600327a
[18]  Li, J., Zhang, Z.D., Sun, Y.B., Zhang, J., Zhou, G.X., Luo, H.Z. and Liu, G.D. (2013) Physica B: Condensed Matter, 409, 35-41.
https://doi.org/10.1016/j.physb.2012.10.006
[19]  Li, C.-M., Luo, H.-B., Hu, Q.-M., Yang, R., Johansson, B. and Vitos, L. (2012) Physical Review B, 86, Article ID: 214205.
https://doi.org/10.1103/PhysRevB.86.214205
[20]  Luo, H.-B., Hu, Q.-M., Li, C.-M., Yang, R., Johansson, B. and Vitos, L. (2012) Physical Review B, 86, Article ID: 024427.
https://doi.org/10.1103/PhysRevB.86.024427
[21]  Li, C.-M., Luo, H.-B., Hu, Q.-M., Yang, R., Johansson, B. and Vitos, L. (2011) Physical Review B, 84, Article ID: 174117.
https://doi.org/10.1103/PhysRevB.84.174117
[22]  Li, C.-M., Luo, H.-B., Hu, Q.-M., Yang, R., Johansson, B. and Vitos, L. (2011) Physical Review B, 84, Article ID: 024206.
https://doi.org/10.1103/PhysRevB.84.024206
[23]  Hu, Q.-M., Li, C.-M., Yang, R., Kulkova, S.E., Bazhanov, D.I., Johansson, B. and Vitos, L. (2009) Physical Review B, 79, Article ID: 144112.
https://doi.org/10.1103/PhysRevB.79.144112
[24]  Moya, X., Manosa, L., Planes, A., Krenke, Th., Acet, M., Morin, M., Zarestky, J.L. and Lograsso, T.A. (2006) Physical Review B, 74, Article ID: 024109.
https://doi.org/10.1103/PhysRevB.74.024109
[25]  Bungaro, C., Rabe, K.M. and DalCorso, A. (2003) Physical Review B, 68, Article ID: 134104.
https://doi.org/10.1103/PhysRevB.68.134104
[26]  de Jong, M., Olmsted, D.L., van de Walle, A. and Asta, M. (2012) Physical Review B, 86, Article ID: 224101.
https://doi.org/10.1103/PhysRevB.86.224101
[27]  Suits, J.C. (1976) Solid State Communications, 18, 423-425.
https://doi.org/10.1016/0038-1098(76)90040-5
[28]  Ziambaras, E. and Schröder, E. (2003) Physical Review B, 68, Article ID: 064112.
https://doi.org/10.1103/PhysRevB.68.064112
[29]  Birch, F. (1947) Physical Review, 71, 809.
https://doi.org/10.1103/PhysRev.71.809
[30]  Murnaghan, F.D. (1944) Proceedings of the National Academy of Sciences of the United States of America, 30, 244.
https://doi.org/10.1073/pnas.30.9.244
[31]  Wallace, D.C. (1972) Thermodynamics of Crystals. Dover Publication Inc., Mineola, New York.
[32]  Özdemir Kart, S., Uludgan, M., Karaman, I. and Cagin, T. (2008) Physica Status Solidi (a), 205, 1026.
https://doi.org/10.1002/pssa.200776453
[33]  Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D. and Luitz, J. (2001) WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz, Techn. Universität Wien, Austria.
[34]  Graf, T., Fecher, G.H., Barth, J., Winterlik, J. and Felser, C. (2009) Journal of Physics D: Applied Physics, 42, Article ID: 084003.
https://doi.org/10.1088/0022-3727/42/8/084003
[35]  Ishida, S., Akazawa, S., Kubo, Y. and Ishida, J. (1982) Journal of Physics F: Metal Physics, 12, 1111.
https://doi.org/10.1088/0305-4608/12/6/012
[36]  Mohn, P., Blaha, P. and Schwarz, K. (1995) Journal of Magnetism and Magnetic Materials, 140-144, 183-184.
https://doi.org/10.1016/0304-8853(94)00941-4
[37]  Perdew, J.P., Burke, K. and Ernzerhof, M. (1997) Physical Review Letters, 78, 1396.
https://doi.org/10.1103/PhysRevLett.78.1396
[38]  Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Physical Review Letters, 77, 3865.
https://doi.org/10.1103/PhysRevLett.77.3865
[39]  Özdemir Kart, S. and Cagin, T. (2010) Journal of Alloys and Compounds, 508, 177-183.
https://doi.org/10.1016/j.jallcom.2010.08.039
[40]  Martynov, V.V. and Kokorin, V.V. (1992) Journal de Physique III, 2, 739-749.
https://doi.org/10.1051/jp3:1992155
[41]  Webster, P.J., Ziebeck, K.R.A., Town, S.L. and Peak, M.S. (1984) Philosophical Magazine B, 49, 295-310.
https://doi.org/10.1080/13642817408246515
[42]  Tsunegi, S., Sakuraba, Y., Oogane, M., Takanashi, K. and Ando, Y. (2008) Applied Physics Letters, 93, Article ID: 112506.
https://doi.org/10.1063/1.2987516
[43]  Worgull, J., Petti, E. and Trivisonno, J. (1996) Physical Review B, 54, Article ID: 15695.
https://doi.org/10.1103/PhysRevB.54.15695
[44]  Hu, Q.-M., Li, C.-M., Yang, R., Kulkova, S.E., Bazhanov, D.I., Johansson, B. and Vitos, L. (2009) Physical Review B, 79, Article ID: 144112.
https://doi.org/10.1103/PhysRevB.79.144112
[45]  Ledbetter, H. (2006) Materials Science and Engineering: A, 442, 31-34.
https://doi.org/10.1016/j.msea.2006.04.147
[46]  Dhar, S.K., Grover, A.K., Malik, S.K. and Vijayaraghavan, R. (1980) Solid State Communications, 33, 545-547.
https://doi.org/10.1016/0038-1098(80)90856-X
[47]  Pugh, S.F. (1954) Philosophical Magazine, 45, 823-843.
https://doi.org/10.1080/14786440808520496
[48]  McSkimin, H.J. and Bond, W.L. (1957) Physical Review, 105, 116.
https://doi.org/10.1103/PhysRev.105.116
[49]  Lazarus, D. (1949) Physical Review, 76, 545.
https://doi.org/10.1103/PhysRev.76.545
[50]  Niu, H.Y., Chen, X.-Q., Liu, P.T., Xing, W.W., Cheng, X.Y., Li, D.Z. and Li, Y.Y. (2012) Scientific Reports, 2, Article Number: 718.
https://doi.org/10.1038/srep00718
[51]  Christensen, R.M. (2013) The Theory of Materials Failure. Oxford University Press, Oxford.
https://doi.org/10.1093/acprof:oso/9780199662111.001.0001
[52]  Bader, R.F.W. (1990) Atoms in Molecules. A Quantum Theory. Oxford University Press, Oxford.
[53]  Otero-de-la Roza, A., Blanco, M.A., Pendas, A.M. and Luana, V. (2009) Computer Physics Communications, 180, 157-166.
https://doi.org/10.1016/j.cpc.2008.07.018
[54]  Otero-de-la Roza, A., Johnson, E.R. and Luana, V. (2014) Computer Physics Communications, 185, 1007-1018.
https://doi.org/10.1016/j.cpc.2013.10.026
[55]  Zayak, A.T. and Entel, P. (2004) Materials Science and Engineering: A, 378, 419-423.
https://doi.org/10.1016/j.msea.2003.10.368
[56]  Jiang, C., Gong, S. and Xu, H. (2003) Materials Science and Engineering: A, 342, 231-235.
https://doi.org/10.1016/S0921-5093(02)00288-5
[57]  Gasi, T., Ksenofontov, V., Kiss, J., Chadov, S., Nayak, A.K., Nicklas, M., Winterlik, J., Schwall, M., Klaer, P., Adler, P. and Felser, C. (2013) Physical Review B, 87, Article ID: 064411.
https://doi.org/10.1103/PhysRevB.87.064411
[58]  Anderson, O.L. (1963) Journal of Physics and Chemistry of Solids, 24, 909-917.
https://doi.org/10.1016/0022-3697(63)90067-2
[59]  Ouardi, S., Fecher, G.H., Felser, C., Schwall, M., Naghavi, S.S., Gloskovskii, A., Balke, B., Hamrle, J., Postava, K., Pistora, J., Ueda, S. and Kobayashi, K. (2012) Physical Review B, 86, Article ID: 045116.
https://doi.org/10.1103/PhysRevB.86.045116
[60]  Belomestnykh, V.N. (2004) Technical Physics Letters, 30, 91-93.
https://doi.org/10.1134/1.1666949
[61]  Chernenko, V.A., Fujita, A., Besseghini, S. and Pérez-Landazabal. J.I. (2008) Journal of Magnetism and Magnetic Materials, 320, e156-159.
https://doi.org/10.1016/j.jmmm.2008.02.139
[62]  Nye, J.F. (1985) Physical Properties of Crystals. Oxford Science Publications, Oxford.
[63]  Voigt, W. (1928) Lehrbuch der Kristallphysik. Teubner Verlag, Leipzig.
[64]  Reuß, A. (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizit¨atitsbedingung f¨ur Einkristalle. Ztschr. f. angew. Math. und Meceitschrift für Angewandte Mathematik und Mechanikh., 9, 49.
[65]  Hill, R. (1952) Proceedings of the Physical Society. Section A, A65, 349.
https://doi.org/10.1088/0370-1298/65/5/307
[66]  Born, M. (1940) Mathematical Proceedings of the Cambridge Philosophical Society, 36, 160-172.
https://doi.org/10.1017/S0305004100017138
[67]  Misra, R.D. (1940) Mathematical Proceedings of the Cambridge Philosophical Society, 36, 173-182.
https://doi.org/10.1017/S030500410001714X
[68]  Born, M. and Fürth, R. (1940) Mathematical Proceedings of the Cambridge Philosophical Society, 36, 454-465.
https://doi.org/10.1017/S0305004100017503
[69]  Born, M. and Misra, R.D. (1940) Mathematical Proceedings of the Cambridge Philosophical Society, 36, 466-478.
https://doi.org/10.1017/S0305004100017515
[70]  Fürth, R. (1941) Mathematical Proceedings of the Cambridge Philosophical Society, 37, 34-54.
https://doi.org/10.1017/S0305004100021514
[71]  Fürth, R. (1941) Mathematical Proceedings of the Cambridge Philosophical Society, 37, 177-185.
https://doi.org/10.1017/S0305004100021666
[72]  Born, M. and Huang, K. (1956) Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford.

Full-Text

comments powered by Disqus