All Title Author
Keywords Abstract


Effect of the Shear Reinforcement Type on the Punching Resistance of Concrete Slabs

DOI: 10.4236/ojce.2018.81001, PP. 1-11

Keywords: Finite Element Method, Punching, Shear, Reinforcement, Slabs

Full-Text   Cite this paper   Add to My Lib

Abstract:

Punching shear failure of flat concrete slabs is a complex phenomenon with brittle failure mode, meaning sudden structural failure and rapid decrease of load carrying capacity. Due to these reasons, the application of appropriate punching shear reinforcement in the slabs could be essential. To obtain the required structural strength and performance in slab-column junctions, the effect of the shear reinforcement type on the punching resistance must be known. For this purpose, numerous nonlinear finite element simulations were carried out to determine the behavior and punching shear strength of flat concrete slabs with different punching shear reinforcement types. The efficiency of different reinforcement types was also determined and compared. Accuracy of the numerical simulations was verified by experimental results. Based on the comparison of numerical results,?the partial factor for the design formula used in Eurocode 2 was calculated and was found to be higher than the actual one.

References

[1]  Polak, M.A., El-Salakawy, E. and Hammill, N.L. (2005) Shear Reinforcement for Concrete Flat Slabs, ACI (American Concrete Institute), SP-232, 75-90.
[2]  Guadalini, S. and Muttoni, A. (2009) Punching Tests of Slabs with Low Reinforcement Ratios. ACI Structural Journal, 2009, 87-95.
[3]  Alam, J., Khan, M.A. and Salek, M.S. (2009) An Experimental Study on Punching Shear Behavior of Concrete Slabs. Advances in Structural Engineering, 12, 257-265.
https://doi.org/10.1260/136943309788251650
[4]  Lips, S. and Muttoni, A. (2010) Experimental Investigation of Reinforced Concrete Slabs with Punching Shear Reinforcement. 8th Fib International PhD Symposium in Civil Engineering, Kgs. Lyngby, Denmark, 75-80.
[5]  Cervenka, V. and Cervenka, J. (2014) User’s Manual for ATENA 3D, ATENA Program Documentation, Part 2-2. Cervenka Consulting s.r.o., Prague, Czech Republic.
[6]  Cervenka, V., Libor, J. and Cervenka, J. (2014) ATENA Program Documentation: Part 1 Theory. Cervenka Consulting s.r.o., Prague, Czech Republic.
[7]  Kadlec, L. and Cervenka, V. (2015) Uncertainty of Numerical Models for Punching Resistance of RC Slabs. Fib Symposium Proceedings: Concrete, Innovation and Design, Copenhagen, Denmark, 1-13.
[8]  Kozma, A., Bódi, I. and Koris, K. (2016) Partial Factor Assessment for the Punching Shear Resistance of Flat Concrete Slabs. Proceedings of the 11th Fib International PhD Symposium in Civil Engineering, Tokyo, Japan, 657-662.
[9]  Eurocode (2010) EN 1992-1-1:2010: Eurocode 2: Design of Concrete Structures, Part 1-1: General Rules and Rules for Buildings. Hungarian Standards Institution, Budapest, Hungary.
[10]  Eurocode (2011) EN 1990:2011: Basis of Structural Design, Annex D, Chapter 8. Hungarian Standards Institution, Budapest, Hungary.
[11]  Joint Committee on Structural Safety (2001) JCSS Probabilistic Model Code Part 3: Resistance Models.
[12]  Soukhov, D. and Jungwirth, F. (1997) Conformity and Safety of Concrete According to prEN 206 and Eurocodes. Leipzig Annual Civil Engineering Report, No. 2, Leipzig, Germany.
[13]  Lips, S. (2012) Punching of Flat Slabs with Large Amounts of Shear Reinforcement. PhD Dissertation, école Polytechnique Fédérale De Lausanne, Lausanne.

Full-Text

comments powered by Disqus