全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

Evaluación de insecticidas sintéticos sobre adultos de Metamasius spinolae (Coleoptera: Curculionidae) procedentes de Tlalnepantla, Morelos Evaluation of synthetic insecticides on Metamasius spinolae (Coleoptera: Curculionidae) adults from Tlalnepantla, Morelos

Evaluación de insecticidas sintéticos sobre adultos de Metamasius spinolae (Coleoptera: Curculionidae) procedentes de Tlalnepantla, Morelos

REDESCRIPCIóN DE INMADUROS, CICLO DE VIDA, DISTRIBUCIóN E IMPORTANCIA AGRíCOLA DE CYCLOCEPHALA LUNULATA BURMEISTER (COLEóPTERA: MELOLONTHIDAE: DYNASTINAE) EN COLOMBIA

Caracterización molecular de 15 aislamientos de Beauveria bassiana asociados con Cosmopolites y Metamasius en plátano y banano en tres regiones de Colombia

Caracterización molecular de 15 aislamientos de Beauveria bassiana asociados con Cosmopolites y Metamasius en plátano y banano en tres regiones de Colombia

Ocorrência de Cyclocephala forsteri em Acronomia aculeata

Aspectos biológicos de Cyclocephala verticalis burmeister (coleoptera: scarabaeidae)

Falsa broca aumenta dissemina??o de Beauveria bassiana em popula??es de campo da broca-do-rizoma da bananeira

Bothrideres cactophagi Schwarz (Coleoptera: Bothrideridae), parasitoide del picudo del nopal en México

Gerris spinolae Lethierry and Severin (Hemiptera: Gerridae) and Brachydeutera longipes Hendel (Diptera: Ephydridae): Two Effective Insect Bioindicators to Monitor Pollution in Some Tropical Freshwater Ponds under Anthropogenic Stress

更多...

Assessment of Beauveria bassiana and Their Enzymatic Extracts against Metamasius spinolae and Cyclocephala lunulata in Laboratory

DOI: 10.4236/aer.2016.43010, PP. 98-112

Keywords: Insecticidal Activity, Beauveria bassiana, Metamasius spinolae, Cyclocephala lunulata, Enzymatic Extracts

Full-Text   Cite this paper   Add to My Lib

Abstract:

The application of enzymatic extracts and conidia of Beauveria bassiana in Metamasius spinolae and Cyclocephala lunulata was evaluated. The variables were mortality and time of death. In M. spinolae, mortality with extracts 29%, conidia 27% and the combination of both 31%, all had a time of death of four days. Although with different symptoms, used enzymatic extracts: contraction and softening of the joints; by conidia: mycelium in the joints; in the combination of conidia and enzymatic extracts: abundant aerial mycelium. In C. lunulata, 100% mortality in all treatments; Time of death: enzymatic extracts and extracts with conidia 1.2 days; conidia 2.8 days. Symptoms were different, enzymatic extracts: melanization and internal tissue lysis; enzymatic extract and conidia: mycelium emerged and melanization; conidia: mycelium emerged. Enzymatic extracts showed insecticidal activity in M. spinolae and C. lunulata. These results suggest the potential of enzymatic extracts as biocontrol agents to improve the use of entomopathogenic fungi.

References

[1]  Tafoya, F., Zuñiga-Delgadillo, M., Alatorre, R., Cibrian-Tovar, J. and Stanley, D. (2004) Pathogenicity of Beauveria bassiana (Deuteromycota: Hyphomycetes) against the Cactus Weevil, Metamasius spinolae (Coleoptera: Curculionidae) under Laboratory Conditions. Florida Entomologist, 87, 533-536.
http://dx.doi.org/10.1653/0015-4040(2004)087[0533:POBBDH]2.0.CO;2
[2]  Cerón-González, C., Rodríguez-Leyva, E., Lomelí-Flores, J.R., Hernández-Olmos, C.E., Peña-Martínez, R. and Mora-Aguilera, G. (2012) Evaluación de insecticidas sintéticos sobre adultos de Metamasius spinolae (Coleoptera: Curculionidae) procedentes de Tlalnepantla, Morelos. Revista Mexicana Ciencia Agrícola, 3, 217-229.
[3]  SEDEREC (2009) Geoestadística del nopal-verdura en el Distrito Federal. In: Alimentación, P., Ed., Secretaría de Agricultura, Ganaderia, Desarrollo Rural, México, Oficina Estatal de Información para el Desarrollo Rural Sustentable del Distrito Federal (OEIDRUS D.F.).
[4]  Orduño-Cruz, N., Guzmán-Franco, A.W., Rodríguez-Leyva, E., López-Collado, J., Valdéz- Carrasco, J.M. and Mora-Aguilera, G. (2011) Susceptibility of the Cactus Weevil Metamasiusspinolaeto Beauveriabassiana and Metarhiziumanisopliae under Laboratory and Field Conditions. Journal of Applied Microbiology, 11, 939-948. http://dx.doi.org/10.1111/j.1365-2672.2011.05097.x
[5]  Morón, M.A. (2006) Revisión de las especies de Phyllophaga (Phytalus) grupos obsoleta y pallida (Coleoptera: Melolonthidae: Melolonthinae). Folia Entomologia Mexicana, 45, 1- 104.
[6]  Aragón-García, A., Morón, M.A., Damián-Huato, M.A., López-Olguín, J.F., Pinsón- Rincón, E.P. and Pérez-Quintanilla, J.N. (2012) Fauna de Coleoptera Lamellicornia de la zona cañera del ingenio de Atencingo, Puebla, México. Acta Zoológica Mexicana, 28, 161- 171.
[7]  Farenhorst, M., Mouatcho, J.C., Kikankie, C.K., Brooke, B.D., Hunt, R.H., Thomas, M.B., Koekemoer, L.L., Knols, B.G. and Coetzee, M. (2009) Fungal Infection Counters Insecticide Resistance in African Malaria Mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 106, 17443-17447. http://dx.doi.org/10.1073/pnas.0908530106
[8]  Lubeck, I., Arruda, W., Souza, B.K., Staniscuaski, F., Carlini, C.R., Schrank, A. and Vainstein, M.H. (2008) Evaluation of Metarhizium anisopliae Strains as Potential Biocontrol Agents of the Tick Rhipicephalus (Boophilus) microplus and the Cotton Stainer Dysdercus peruvianus. Fungal Ecology, 1, 78-88.
http://dx.doi.org/10.1016/j.funeco.2008.09.002
[9]  Boldo, J.T., Junges, A., Amaral, K.B., Staats, C.C., Vainstein, M.H. and Scharank, A. (2009) Endochitinase CHI2 of the Biocontrol Fungus Metarhizium anisopliae Affects Its Virulence toward the Cotton Stainer Bug Dysdercus peruvians. Current Genetics, 55, 551-560. http://dx.doi.org/10.1007/s00294-009-0267-5
[10]  Sobotnik, J., Kudlikova-Krizkova, I., Vancova, M., Munzbergova, Z. and Hubert, J. (2008) Chitin in the Peritrophic Membrane of Acarussiro (Acari: Acaridae) as a Target for Novel Acaricides. Journal of Economic Entomology, 101, 1028-1033.
http://dx.doi.org/10.1603/0022-0493(2008)101[1028:CITPMO]2.0.CO;2
[11]  Ali, S., Huang, Z. and Ren, S. (2010). Production of cuticle degrading enzymes by Isariafumosorosea and their evaluation as a biocontrol agent against diamondback moth. Journal of Pest Science 83: 361–370.
http://dx.doi.org/10.1007/s10340-010-0305-6
[12]  Fang, W., Feng, J., Fan, Y., Zhang, Y., Bidochka, M.J., Leger, S.T., and Pei, Y. (2009) Expressing a Fusion Protein with Protease and Chitinase Activities Increases the Virulence of the Insect Pathogen Beauveria bassiana. Journal of Invertebrate Pathology, 102, 155-159. http://dx.doi.org/10.1016/j.jip.2009.07.013
[13]  Shahid, A.A., Rao, A.Q., Bakhsh, A. and Husnain, T. (2012) Entomopathogenic fungi as Biological Controllers: New Insights into Their Virulence and Pathogenicity. Archives of Biological Sciences, 64, 21-42.
http://dx.doi.org/10.2298/ABS1201021S
[14]  Barranco-Florido, J.E., Bustamante-Camilo, P., Mayorga-Reyes, L., Martínez-Cruz, P. and Azaola, M.A. (2009) β-N Acetylglucosaminidase Production by Lecanicillium (Verticillium) lecanii ATCC 26854 by Solid-State Fermentation Utilizing Shrimp Shell. Interciencia, 34, 356-360.
[15]  Almeida, F.B. (2001) Mycoparasitism Studies of Trichoderma harzianum Strains against Rhizoctoniasolani: Evaluation of Coiling and Hydrolytic Enzyme Production. Biotechnology Letters, 29, 1189-1193.
http://dx.doi.org/10.1007/s10529-007-9372-z
[16]  Agrawal, T. and Kotasthane, A.S. (2012) Chitinolytic Assay of Indigenous Trichoderma Isolates Collected from Different Geographical Locations of Chhattisgarh in Central India. SpringerPlus, 1, 73.
http://dx.doi.org/10.1186/2193-1801-1-73
[17]  Chávez-Ibañez, E., Rodríguez-Navarro, S., Sánchez-Pérez, L.L.C., Partida-Hamdan, A. and Barranco-Florido, J.E. (2014) Actividad insecticida in Vitro de extracto crudo de Beauveria bassiana (Bálsamo) Vuillemin sobre larvas de Phyllophaga spp. (Harris). Revista de Protección Vegetal, 29, 226-230.
[18]  Fernandes, E.G., Valerio, H.M., Eltrin, T. and Van Dersand, S.T. (2012) Variability in the Production of Extracellular Enzymes by Entomopathogenic Fungi Grown on Different Substrates. Brazilian Journal of Microbiology, 43, 827-833. http://dx.doi.org/10.1590/S1517-83822012000200049
[19]  Xu, Y., Bajaj, M., Schneider, R., Grage, S.L., Ulrich, A.S., Winter, J. and Gallert, C. (2013) Transformation of the Matrix Structure of Shrimp Shells during Bacterial Deproteination and Demineralization. Microbial Cell Factories, 12, 90. http://dx.doi.org/10.1186/1475-2859-12-90
[20]  Rosas-García, N.M., ávalos-De León, O., Villegas-Mendoza, J.M., Mireles-Martínez, M., Barboza-Corona, J.E. and Castañeda-Ramírez, J.C. (2014) Correlation between pr1 and pr2 Gene Content and Virulence in Metarhizium anisopliae Strains. Journal of Microbiology and Biotechnology, 24, 1495-1502.
http://dx.doi.org/10.4014/jmb.1404.04044
[21]  Dias, B.A., Neves, P.M.O.J., Maia, L.F. and Furlaneto, M.C. (2008) Cuticle Degrading Proteases Produced by the Entomopathogenic Fungus Beauveria bassiana in the Presence of Coffe Berry Borer Cuticle. Brazilian Journal of Microbiology, 39, 301-306. http://dx.doi.org/10.1590/S1517-83822008000200019
[22]  St Leger, R.J., Joshi, L., Bidochka, M.J. and Rizzo, N.W. (1996) Biochemical Characterization and Ultrastructural Localization of Two Extracellular Trypsins Produced by Metarhiziu manisopliae in Infected Insect Cuticles. Applied and Environmental Microbiology, 62, 1257-1264.
[23]  Gao, Q., Jin, K., Ying, S.H., Zhang, Y., Xiao, G., Shang, Y., Duan, Z., Hu, X., Xie, X.Q., Zhou, G., Peng, G., Luo, Z., Huang, W., Wang, B., Fang, W., Wang, S., Zhong, Y., Ma, L.J., St Leger, R.J., Zhao, G.P., Pei, Y., Feng, M.G., Xia, Y. and Wang, C. (2011) Genome Secuencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhiziu manisopliae and M. acridum. PLoS Genetics, 7, e1001264. http://dx.doi.org/10.1371/journal.pgen.1001264
[24]  Fang, W., Ripoll, M.P., Wang, S. and St Leger, R.J. (2009) Protein Kinase A Regulates Production of Virulence Determinants by the Entomopathogenic Fungus, Metarhiziu manisopliae. Fungal Genetics and Biology, 46, 277-285. http://dx.doi.org/10.1016/j.fgb.2008.12.001
[25]  Beysda Silva, O.W., Santi, L., Scharank, A. and Vainstein, M.H. (2010) Metharhiziu manisopliae Lipolytic Activity Plays a Pivotal Role in Rhipicepthalus (Boophilus) Microplus Infection. Fungal Biology, 144, 10-15.
http://dx.doi.org/10.1016/j.mycres.2009.08.003
[26]  Ali, S., Ren, S. and Huang, Z. (2014) Extracellular Lipase of an Entomopathogenic Fungus Effecting Larvae of a Scale Insect. Journal Basic Microbiology, 54, 1148-1159.
http://dx.doi.org/10.1002/jobm.201300813
[27]  Binod, P., Sukumaran, R.K., Shirke, S.V., Rajput, J.C. and Pandey, A. (2007) Evaluation of Fungal Culture Filtrate Containing Chitinase as a Biocontrol Agent against Helicoverpa armigera. Journal of Applied Microbiology, 103, 1845-1852. http://dx.doi.org/10.1111/j.1365-2672.2007.03428.x
[28]  Wang, K., Yan, P.S., Cao, L.X., Ding, Q.L., Shao, C. and Zhao, T.F. (2013) Potential of Chitinolytic Serratia marcescens Strain JPP1 for Biological Control of Aspergillus parasiticus and Aflatoxin. Biomed Research International, 2013, Article ID: 397142. http://dx.doi.org/10.1155/2013/397142
[29]  St Leger, R.J. (1991) Integument as a Barrier to Microbial Infections, In: Binnington, K. and Retnakaran, A., Eds., Physiology of the Insect Epidermis, Commonwealth Scientific and Industrial Research Organization, Melbourne, 286-308.
[30]  Barbosa, R.C., Atílio, J.J. and Souza, G.L.H. (2012) Optimization of the Chitinase Production by Different Metarhiziu manisopliae Strains under Solid-State Fermentation with Silk- worm Chrysalis as Substrate Using CCRD. Advances in Applied Microbiology, 2, 268-276. http://dx.doi.org/10.4236/aim.2012.23032
[31]  Juárez, M.P. and Fernández, G.C. (2007) Cuticular Hydrocarbons of Triatomines. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 14, 711- 730.
http://dx.doi.org/10.1016/j.cbpa.2006.08.031
[32]  Sandhu, S.S., Sharma, A.K., Beniwal, V., Goel, G., Batra, P., Kumar, A., Jaglan, S., Sharma, A.K. and Malhotra, S. (2012) Myco-Biocontrol of Insect Pests: Factors Involved, Mechanism, and Regulation. Journal of Pathogens, 2012, Article ID: 126819. http://dx.doi.org/10.1155/2012/126819
[33]  Boevé, J.L., Ducarme, V., Mertens, T., Bouillard, P. and Angel, S. (2004) Surface Structure, Model and Mechanism of an Insect Integument Adapted to Be Damaged Easily. Journal of Nanobiotechnology, 2, 10.
http://dx.doi.org/10.1186/1477-3155-2-10
[34]  Ricaño, J., Güerri-Agulló, B., Serna-Sarriás, M.J., Rubio-Llorca, G., Asensio, L., Barranco, P. and Lopez-Llorca, L.V. (2013) Evaluation of the Pathogenicity of Multiple Isolates of Beauveria bassiana (Hypocreales: Clavicipitaceae) on Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) for the Assessment of a Solid Formulation under Simulated Field Conditions. Florida Entomologist, 96, 1311-1324.
http://dx.doi.org/10.1653/024.096.0410
[35]  Meyling, N.V and Eilenberg, J. (2007) Ecology of the Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae in Temperate Agroecosystems: Potential for Conservation Biological Control. Biological Control, 43, 145-155. http://dx.doi.org/10.1016/j.biocontrol.2007.07.007
[36]  Wang, C., Hu, G. and St Leger, R.J. (2005) Differential Gene Expression by Metarhizium anisopliae Growing in Root Exudate and Host (Manduca sexta) Cuticle or Hemolymph Reveals Mechanisms of Physiological Adaptation. Fungal Genetics and Biology, 42, 704- 718. http://dx.doi.org/10.1016/j.fgb.2005.04.006
[37]  Quesada-Moraga, E. and Vey, A. (2004) Bassiacridin, a Protein Toxic for Locusts Secreted by the Entomopathogenic Fungus Beauveria bassiana. Mycological Research, 108, 441-452.
http://dx.doi.org/10.1017/S0953756204009724
[38]  Nappi, A.J. and Christensen, B.M. (2005) Melanogenesis and Associated Cytotoxic Reactions: Applications to Insect Innate Immunity. Insect Biochemistry and Molecular Biology, 35, 443-459.
http://dx.doi.org/10.1016/j.ibmb.2005.01.014
[39]  Cerenius, L., Lee, B.L. and Söderhäll, K. (2008) The proPO-system Pros and Cons for Its Role in Invertebrate Immunity. Trends in Immunology, 29, 263-271. http://dx.doi.org/10.1016/j.it.2008.02.009
[40]  EL Chamy, L., Leclerc, V., Caldelari, I. and Reichhart, J.M. (2008) Sensing of “Danger Signals” and Pathogen Associated Molecular Patterns Defines Binary Signaling Pathways “Upstream” of Toll. Nature Immunology, 9, 1165-1170. http://dx.doi.org/10.1038/ni.1643
[41]  Ashida, M. and Brey, P.T. (1997) Recent Advances in Research on the Insect Phenoloxidase Cascade. In: Brey, P.T. and Hultmark, D., Eds., Molecular Mechanisms of Immune Responses in Insects, Chapman & Hall, London, 135-172.
[42]  Fuguet, R. and Vey, A. (2004) Comparative Analysis of the Production of Insecticidal and Melanizing Macromolecules by Strains of Beauveria bassiana spp. in Vivo Studies. Journal of Invertebrate Pathology, 85, 152-167. http://dx.doi.org/10.1016/j.jip.2004.03.001
[43]  Kim, J.S., Roh, J.Y., Choi, J.Y., Wang, Y., Shim H,J. and Je, Y.H. (2010) Correlation of the Aphicidal Activity of Beauveria bassiana SFB-205 Supernatant with Enzymes. Fungal Biologyogy, 114, 120-128.
http://dx.doi.org/10.1016/j.mycres.2009.10.011
[44]  Shoaib, F., Jin, F.L., Muhammad, N., Ren, S.X. and Mubshar, H. (2012) Toxicity of Proteins Secreted by Entomophatogenic Fungi against Plutella xylostella (Lepidoptera: Plutellidae). International Journal of Agriculture and Biology, 14, 291-295.
[45]  Quesada-Moraga, E., Carrasco-Díaz, J.A. and Santiago-álvarez, C. (2006) Insecticidal and Antifeedant Activities of Proteins Secreted by Entomopathogenic Fungi against Spodoptera littoralis (Lep., Noctuidae). Journal of Applied Entomology, 130, 442-452. http://dx.doi.org/10.1111/j.1439-0418.2006.01079.x
[46]  Harrison, R.L and Bonning, B.C. (2010) Proteases as Insecticidal Agents. Toxins, 2, 935- 953.
http://dx.doi.org/10.3390/toxins2050935

Full-Text

comments powered by Disqus