全部 标题 作者
关键词 摘要


Discovery and Characterization of a Thermostable Esterase from an Oil Reservoir Metagenome

DOI: 10.4236/aer.2016.42008, PP. 68-86

Keywords: Metagenomics, Enzyme Discovery, Thermostable, Esterase

Full-Text   Cite this paper   Add to My Lib

Abstract:

With the aim of identifying novel thermostable esterases, comprehensive sequence databases and cloned fosmid libraries of metagenomes derived from an offshore oil reservoir on the Norwegian Continental Shelf were screened for enzyme candidates using both sequence-and function-based screening. From several candidates identified in both approaches, one enzyme discovered by the functional approach was verified as a novel esterase and subjected to a deeper characterization. The enzyme was successfully over-produced in Escherichia coli and was shown to be thermostable up to 90°C, with the highest esterase activity on short-chain ester substrates and with tolerance to solvents and metal ions. The fact that the thermostable enzyme was solely found by functional screening of the oil reservoir metagenomes illustrates the importance of this approach as a complement to purely sequence-based screening, in which the enzyme candidate was not detected. In addition, this example indicates the large potential of deep-sub-surface oil reservoir metagenomes as a source of novel, thermostable enzymes of potential relevance for industrial applications.

References

[1]  Whitman, W.B., Coleman, D.C. and Wiebe, W.J. (1998) Prokaryotes: The Unseen Majority. Proceedings of the National Academy of Sciences of the United States of America, 95, 6578-6583.
http://dx.doi.org/10.1073/pnas.95.12.6578
[2]  Wentzel, A., et al. (2013) Deep Sub-Surface Oil Reservoirs as Poly-Extreme Habitats for Microbial Life. A Current Review. In: Polyextremophiles, Volume 27 of the series Cellular Origin, Life in Extreme Habitats and Astrobiology, Springer, 439-466. http://dx.doi.org/10.1007/978-94-007-6488-0_19
[3]  Lewin, A., Wentzel, A. and Valla, S. (2013) Metagenomics of Microbial Life in Extreme Temperature Environments. Current Opinion in Biotechnology, 24, 516-525.
http://dx.doi.org/10.1016/j.copbio.2012.10.012
[4]  Magot, M., Ollivier, B. and Patel, B.K. (2000) Microbiology of Petroleum Reservoirs. Antonie Van Leeuwenhoek, 77, 103-116. http://dx.doi.org/10.1023/A:1002434330514
[5]  Orphan, V.J., et al. (2000) Culture-Dependent and Culture-Independent Characterization of Microbial Assemblages Associated with High-Temperature Petroleum Reservoirs. Applied and Environmental Microbiology, 66, 700-711. http://dx.doi.org/10.1128/AEM.66.2.700-711.2000
[6]  Ramesha, B., et al. (2010) Biodiversity and Chemodiversity: Future Perspectives in Bioprospecting. Current Drug Targets, 12, 1515-1530.
[7]  Lee, M.H. and Lee, S.-W. (2013) Bioprospecting Potential of the Soil Metagenome: Novel Enzymes and Bioactivities. Genomics & Informatics, 11, 114-120. http://dx.doi.org/10.5808/GI.2013.11.3.114
[8]  Koskinen, P., et al. (2008) Bioprospecting Thermophilic Microorganisms from Icelandic Hot Springs for Hydrogen and Ethanol Production. Energy & Fuels, 22, 134-140. http://dx.doi.org/10.1021/ef700275w
[9]  Novakova, J. and Farkasovsky, M. (2013) Bioprospecting Microbial Metagenome for Natural Products. Biologia, 68, 1079-1086. http://dx.doi.org/10.2478/s11756-013-0246-7
[10]  Vester, J., Glaring, M. and Stougaard, P. (2015) Improved Cultivation and Metagenomics as New Tools for Bioprospecting in Cold Environments. Extremophiles, 19, 17-29.
http://dx.doi.org/10.1007/s00792-014-0704-3
[11]  Xu, Q., et al. (2007) Cellulases for Biomass Conversion. In: Polaina, J. and MacCabe, A.P., Eds., Industrial Enzymes, Springer, Valencia, 65-82. http://dx.doi.org/10.1007/1-4020-5377-0_3
[12]  Acharya, S. and Chaudhary, A. (2012) Bioprospecting Thermophiles for Cellulase Production: A Review. Brazilian Journal of Microbiology, 43, 844-856. http://dx.doi.org/10.1590/S1517-83822012000300001
[13]  Kotlar, H.K., et al. (2011) High Coverage Sequencing of DNA from Microorganisms Living in an Oil Reservoir 2.5 Kilometres Subsurface. Environmental Microbiology Reports, 3, 674-681.
http://dx.doi.org/10.1111/j.1758-2229.2011.00279.x
[14]  Lewin, A., et al. (2014) The Microbial Communities in Two Apparently Physically Separated Deep Subsurface Oil Reservoirs Show Extensive DNA Sequence Similarities. Environmental Microbiology, 16, 545-558.
[15]  Aakvik, T., et al. (2009) A Plasmid RK2-Based Broad-Host-Range Cloning Vector Useful for Transfer of Metagenomic Libraries to a Variety of Bacterial Species. FEMS Microbiology Letters, 296, 149-158. http://dx.doi.org/10.1111/j.1574-6968.2009.01639.x
[16]  Finn, R.D., et al. (2014) Pfam: The Protein Families Database. Nucleic Acids Research, 42, D222-D230. http://dx.doi.org/10.1093/nar/gkt1223
[17]  Altschul, S.F., et al. (1997) Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Research, 25, 3389-3402. http://dx.doi.org/10.1093/nar/25.17.3389
[18]  Chang, A., et al. (2015) BRENDA in 2015: Exciting Developments in Its 25th Year of Existence. Nucleic Acids Research, 43, D439-D446. http://dx.doi.org/10.1093/nar/gku1068
[19]  Dereeper, A., et al. (2008) Phylogeny.fr: Robust Phylogenetic Analysis for the Non-Specialist. Nucleic Acids Research, 36, W465-W469.
[20]  Notredame, C., Higgins, D.G. and Heringa, J. (2000) T-Coffee: A Novel Method for Fast and Accurate Multiple Sequence Alignment. Journal of Molecular Biology, 302, 205-217.
http://dx.doi.org/10.1006/jmbi.2000.4042
[21]  Guindon, S., et al. (2010) New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59, 307-321.
http://dx.doi.org/10.1093/sysbio/syq010
[22]  Chevenet, F., Brun, C., Bañuls, A.-L., Jacq, B. and Christen, R. (2006) TreeDyn: Towards Dynamic Graphics and Annotations for Analyses of Trees. BMC Bioinformatics, 7, 439.
http://dx.doi.org/10.1186/1471-2105-7-439
[23]  Anisimova, M. and Gascuel, O. (2006) Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate, and Powerful Alternative. Systematic Biology, 55, 539-552.
http://dx.doi.org/10.1080/10635150600755453
[24]  Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M. and Barton, G.J. (2009) Jalview Version 2—A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics, 25, 1189-1191.
http://dx.doi.org/10.1093/bioinformatics/btp033
[25]  Rodrigue, S., et al. (2009) Whole Genome Amplification and De novo Assembly of Single Bacterial Cells. PLoS ONE, 4, e6864. http://dx.doi.org/10.1371/journal.pone.0006864
[26]  Lasken, R.S. and Stockwell, T.B. (2007) Mechanism of Chimera Formation during the Multiple Displacement Amplification Reaction. BMC Biotechnology, 7, 19.
http://dx.doi.org/10.1186/1472-6750-7-19
[27]  Klenk, H.P., et al. (1997) The Complete Genome Sequence of the Hyperthermophilic, Sulphate-Reducing Archaeon Archaeoglobus fulgidus. Nature, 390, 364-370. http://dx.doi.org/10.1038/37052
[28]  Ugur, A., et al. (2014) New Lipase for Biodiesel Production: Partial Purification and Characterization of LipSB 25-4. ISRN Biochemistry, 2014, Article ID: 289749.
[29]  Tian, J.W., Lei, Z.C., Qiu, P., Wang, L. and Tian, Y.Q. (2014) Purification and Characterization of a Cold-Adapted Lipase from Oceanobacillus Strain PT-11. PLoS ONE, 9, e101343.
http://dx.doi.org/10.1371/journal.pone.0101343
[30]  Borkar, P.S., Bodade, R.G., Rao, S.R. and Khobragade, C.N. (2009) Purification and Characterization of Extracellular Lipase from a New Strain: Pseudomonas aeruginosa SRT 9. Brazilian Journal of Microbiology, 40, 358-366. http://dx.doi.org/10.1590/S1517-83822009000200028
[31]  Bisht, D., Yadav, S.K. and Darmwal, N.S. (2013) An Oxidant and Organic Solvent Tolerant Alkaline Lipase by P. aeruginosa Mutant: Downstream Processing and Biochemical Characterization. Brazilian Journal of Microbiology, 44, 1305-1314. http://dx.doi.org/10.1590/S1517-83822013000400040
[32]  Hasan, F., Shah, A.A. and Hameed, A. (2006) Industrial applications of Microbial Lipases. Enzyme and Microbial Technology, 39, 235-251. http://dx.doi.org/10.1016/j.enzmictec.2005.10.016
[33]  Balan, A., Ibrahim, D., Abdul, R.R. and Ahmad, R.F.A. (2012) Purification and Characterization of a Thermostable Lipase from Geobacillus thermodenitrificans IBRL-nra. Enzyme Research, 2012, Article ID: 987523.
[34]  Zamost, B.L., Nielsen, H.K. and Starnes, R.L. (1991) Thermostable Enzymes for Industrial Applications. Journal of Industrial Microbiology, 8, 71-81. http://dx.doi.org/10.1007/BF01578757

Full-Text

comments powered by Disqus