全部 标题 作者
关键词 摘要


Theoretical Investigation of Structural, Electronic, and Mechanical Properties of Two Dimensional C, Si, Ge, Sn

DOI: 10.4236/csta.2016.5304, PP. 43-55

Keywords: 2D Nanomaterials, Electronic Band Structure, Graphene, Silicene, Germanene, Stenane, Mechanical Properties, Bonding Characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, we investigate the predictions of the first principles on structural stability, electronic and mechanical properties of 2D nanostructures: graphene, silicene, germanene and stenane. The electronic band structure and density of states in all these 2D materials are found to be generic in nature. A small band gap is generated in all the reported materials other than graphene. The linearity at the Dirac cone changes to quadratic, from graphene to stenane and a perfect semimetalicity is exhibited only by graphene. All other 2D structures tend to become semiconductors with an infinitesimal band gap. Bonding characteristics are revealed by density of states histogram, charge density contour, and Mulliken population analysis. Among all 2D materials graphene exhibits exotic mechanical properties. Analysis by born stability criteria and the calculation of formation enthalpies envisages the structural stability of all the structures in the 2D form. The calculated second order elastic stiffness tensor is used to determine the moduli of elasticity in turn to explore the mechanical properties of all these structures for the prolific use in engineering science. Graphene is found to be the strongest material but brittle in nature. Germanene and stenane exhibit ductile nature and hence could be easily incorporated with the existing technology in the semiconductor industry on substrates.

References

[1]  Lian, C. and Ni, J. (2015) The Effects of Thermal and Electric Fields on the Electronic Structures of Silicene. Physical Chemistry Chemical Physics, 17, 13366-13373.
http://dx.doi.org/10.1039/C5CP01557J
[2]  Bandaru, P.R. and Pichanusakorn, P. (2010) An Outline of the Synthesis and Properties of Silicon Nanowires. Semiconductor Science and Technology, 25, 024003.
[3]  Xu, Y., et al. (2013) Large-Gap Quantum Spin Hall Insulators in Tin Films. Physical Review Letters, 111, 136804.
http://dx.doi.org/10.1103/PhysRevLett.111.136804
[4]  Hohenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas. Physical Review, 136, B864-B871.
http://dx.doi.org/10.1103/PhysRev.136.B864
[5]  Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133-A1138.
http://dx.doi.org/10.1103/PhysRev.140.A1133
[6]  Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
http://dx.doi.org/10.1103/PhysRevLett.77.3865
[7]  Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J. and Payne, M.C.J. (2002) First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, 14, 2717-2744.
http://dx.doi.org/10.1088/0953-8984/14/11/301
[8]  Vanderbilt, D. (1990) Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Physical Review B: Condensed Matter, 41, 7892-7895.
http://dx.doi.org/10.1103/PhysRevB.41.7892
[9]  Fischer, T.F. and Almlof, J. (1992) General Methods for Geometry and Wave Function Optimization. The Journal of Physical Chemistry, 96, 9768-9774.
http://dx.doi.org/10.1021/j100203a036
[10]  Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188-5192.
http://dx.doi.org/10.1103/PhysRevB.13.5188
[11]  Krishnan, R., Xie, Q., Kulik, J., Wang, X.D., Lu, S., Gao, Y., Krauss, T.D., Fauchet, P.M. (2004) Effect of Oxidation on Charge Localization and Transport in a Single Layer of Silicon Nanocrystals. Journal of Applied Physics, 96, 654.
http://dx.doi.org/10.1063/1.1751632
[12]  Han, W.Q., Wu, L.J., Zhu, Y.M. and Strongin, M. (2005) In-Situ Formation of Ultrathin Ge Nanobelts Bonded with Nanotubes. Nano Letters, 5, 1419-1422.
http://dx.doi.org/10.1021/nl050770e
[13]  Li, L.F., Lu, S.-Z., Pan, J.B., Qin, Z.H., Wang, Y.-Q., Wang, Y.L., Cao, G.-Y., Du, S.Z. and Gao, H.-J. (2014) Buckled Germanene Formation on Pt(111). Advanced Materials, 26, 4820-4824.
http://dx.doi.org/10.1002/adma.201400909
[14]  Sahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R.T. and Ciraci, S. (2009) Monolayer Honeycomb Structures of Group-IV Elements and III-V Binary Compounds: First-Principles Calculations. Physical Review B, 80, 155453.
http://dx.doi.org/10.1103/PhysRevB.80.155453
[15]  Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B. and Le Lay, G. (2012) Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Physical Review Letters, 108, 155501.
http://dx.doi.org/10.1103/PhysRevLett.108.155501
[16]  Chiappe, D., Grazianetti, C., Tallarida, G., Fanciulli, M. and Molle, A. (2012) Local Electronic Properties of Corrugated Silicene Phases. Advanced Materials, 24, 5088-5093.
http://dx.doi.org/10.1002/adma.201202100
[17]  Fleurence, A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y. and Yamada-Takamura, Y. (2012) Experimental Evidence for Epitaxial Silicene on Diboride Thin Films. Physical Review Letters, 108, 245501.
http://dx.doi.org/10.1103/PhysRevLett.108.245501
[18]  Balendhran, S., Walia, S., Nili, H., Sriram, S. and Bhaskaran, M. (2015) Elemental Analogues of Graphene: Silicene, Germanene, Stanene, Phosphorene. Small, 11, 640-652.
[19]  Li, C., Yang, S.X., Li, S.-S., Xia, J.-B. and Li, J.B. (2013) Au-Decorated Silicene: Design of a High-Activity Catalyst toward CO Oxidation. The Journal of Physical Chemistry C, 117, 483-488.
http://dx.doi.org/10.1021/jp310746m
[20]  Jose, D. and Datta, A. (2012) Understanding of the Buckling Distortions in Silicene. The Journal of Physical Chemistry C, 116, 24639-24648.
http://dx.doi.org/10.1021/jp3084716
[21]  Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K. (2009) The Electronic Properties of Graphene. Reviews of Modern Physics, 81, 109-162.
[22]  Aliofkhazraei, M., Ali, N., Milne, W.I., Ozkan, C.S., Mitura, S. and Gervasoni, J.L., Eds. (2016) Graphene Science Handbook: Size-Dependent Properties. CRC Press, Boca Raton.
[23]  Peng, Q., Liang, C., Ji, W. and De, S. (2012) A First Principles Investigation of the Mechanical Properties of g-TlN. Modeling and Numerical Simulation of Material Science, 2, 76-84.
http://dx.doi.org/10.4236/mnsms.2012.24009
[24]  Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H. and Ciraci, S. (2009) Two and One-Dimensional Honeycomb Structures of Silicon and Germanium. Physical Review Letters, 102, 236804.
http://dx.doi.org/10.1103/PhysRevLett.102.236804
[25]  Kawahara, K., Shirasawa, T., Arafune, R., Lin, C.-L., Takahashi, T., Kawai, M. and Takagi, N. (2014) Determination of Atomic Positions in Silicene on Ag(111) by low-Energy Electron Diffraction. Surface Science, 623, 25-28.
http://dx.doi.org/10.1016/j.susc.2013.12.013
[26]  Houssa, M., Pourtois, G., Afanas’ev, V.V. and Stesmans, A. (2010) Can Silicon Behave Like Graphene? A First-Principles Study. Applied Physics Letters, 97, 112106.
http://dx.doi.org/10.1063/1.3489937
[27]  Wang, Y.L. and Ding, Y. (2013) Strain-Induced Self-Doping in Silicene and Germanene from First-Principles. Solid State Communications, 155, 6-11.
http://dx.doi.org/10.1016/j.ssc.2012.10.044
[28]  Zhao, H.J. (2012) Strain and Chirality Effects on the Mechanical and Electronic Properties of Silicene and Silicane under Uniaxial Tension. Physics Letters A, 376, 3546-3550.
http://dx.doi.org/10.1016/j.physleta.2012.10.024
[29]  Houssa, M., Pourtois, G., Afanas’ev, V.V. and Stesmans, A. (2010) Electronic Properties of Two-Dimensional Hexagonal Germanium. Applied Physics Letters, 96, 082111.
http://dx.doi.org/10.1063/1.3332588
[30]  Li, C.L., Wang, B., Li, Y.S. and Wang, R. (2009) First-Principles Study of Electronic Structure, Mechanical and Optical Properties of V4AlC3. Journal of Physics D: Applied Physics, 42, 065407.
http://dx.doi.org/10.1088/0022-3727/42/6/065407
[31]  Hu, W.C., Liu, Y., Li, D.J., Zeng, X.Q. and Xu, C.S. (2014) First-Principles Study of Structural and Electronic Properties of C14-Type Laves Phase Al2Zr and Al2Hf. Computational Materials Science, 83, 27-34.
http://dx.doi.org/10.1016/j.commatsci.2013.10.029
[32]  Roome, N.J. and Carey, J.D. (2014) Beyond Graphene: Stable Elemental Monolayers of Silicene and Germanene. ACS Applied Materials & Interfaces, 6, 7743-7750.
[33]  Hu, Q.K., Wu, Q.H., Ma, Y.M., Zhang, L.J., Liu, Z.Y., He, J.L., Sun, H., Wang, H.-T. and Tian, Y.J. (2006) First-Principles Studies of Structural and Electronic Properties of Hexagonal BC5. Physical Review B, 73, 214116.
http://dx.doi.org/10.1103/PhysRevB.73.214116
[34]  Wu, X.J., Pei, Y. and Zeng, X.C. (2009) B2C Graphene, Nanotubes, and Nanoribbons. Nano Letters, 9, 1577-1582.
http://dx.doi.org/10.1021/nl803758s
[35]  Michel, K.H. and Verberck, B. (2008) Theory of the Evolution of Phonon Spectra and Elasticconstants from Graphene to Graphite. Physical Review B, 78, 085424.
http://dx.doi.org/10.1103/PhysRevB.78.085424
[36]  Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, 385-388.
http://dx.doi.org/10.1126/science.1157996
[37]  Hill, R. (1952) The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65, 349-354.
http://dx.doi.org/10.1088/0370-1298/65/5/307
[38]  Bannikov, V.V., Shein, I.R. and Ivanovskii, A.L. (2011) Elastic and Electronic Properties of Hexagonal Rhenium Sub-Nitrides Re3N and Re2N in Comparison with hcp-Re and Wurtzite-Like Rhenium Mononitride ReN. Physica Status Solidi (B), 248, 1369-1374.
http://dx.doi.org/10.1002/pssb.201046564
[39]  Shao, T.J., Wen, B., Melnik, R., Yao, S., Kawazaoe, Y. and Tian, Y.J. (2012) Temperature Dependent Elastic Constants and Ultimate Strength of Graphene and Graphyne. The Journal of Chemical Physics, 137, 194901.
http://dx.doi.org/10.1063/1.4766203
[40]  Qin, R., Wang, C.-H., Zhu, W.J. and Zhang, Y.L. (2012) First-Principles Calculations of Mechanical and Electronic Properties of Silicene under Strain. AIP Advances, 2, 022159.
[41]  Ansari, R., Rouhi, S. and Ajori, S. (2014) Elastic Properties and Large Deformation of Two-Dimensional Silicene Nanosheets Using Molecular Dynamics. Superlattices and Microstructures, 65, 64-70.
http://dx.doi.org/10.1016/j.spmi.2013.10.039
[42]  Haines, J., Léger, J.M. and Bocquillon, G. (2001) Synthesis and Design of Superhard Materials. Annual Review of Materials Research, 31, 1-23.
http://dx.doi.org/10.1146/annurev.matsci.31.1.1
[43]  Liu, F., Ming, P.B. and Li, J. (2007) Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene under Tension. Physical Review B, 76, 064120.
http://dx.doi.org/10.1103/PhysRevB.76.064120
[44]  Qin, R., Zhu, W.J., Zhang, Y.L. and Deng, X.L. (2014) Uniaxial Strain-Induced Mechanical and Electronic Property Modulation of Silicone. Nanoscale Research Letters, 9, 521.
http://dx.doi.org/10.1186/1556-276X-9-521
[45]  Chen, X.Q., Niu, H.Y., Li, D.Z. and Li, Y.Y. (2011) Modeling Hardness of Polycrystalline Materials and Bulk Metallic Glasses. Intermetallics, 19, 1275-1281.
http://dx.doi.org/10.1016/j.intermet.2011.03.026
[46]  Ravindran, P., Fast, L., Korzhavyi, P.A. and Johansson, B. (1998) Density Functional Theory for Calculation of Elastic Properties of Orthorhombic Crystals: Application to TiSi2. Journal of Applied Physics, 84, 4891-4904.
http://dx.doi.org/10.1063/1.368733
[47]  Dubay, O. and Kresse, G. (2003) Accurate Density Functional Calculations for the Phonon Dispersion Relations of Graphite Layer and Carbon Nanotubes. Physical Review B, 67, 035401.
http://dx.doi.org/10.1103/PhysRevB.67.035401
[48]  Pang, Q., Zhang, C.-L., Li, L., Fu, Z.-Q., Wei, X.-M. and Song, Y.-L. (2014) Adsorption of Alkali Metal Atoms on Germanene: A First-Principles Study. Applied Surface Science, 314, 15-20.
http://dx.doi.org/10.1016/j.apsusc.2014.06.138

Full-Text

comments powered by Disqus