全部 标题 作者
关键词 摘要


上海期货黄金的价格走势预测
Forecast on the Price Trend of Shanghai Gold Futures

DOI: 10.12677/HJDM.2015.54012, PP. 81-88

Keywords: 黄金期货,支持向量回归,马尔可夫状态变换模型,复合似然函数
Gold Futures
, Support Vector Regression, Markov Transformation Model, Composite Likelihood Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

黄金具有良好的流通、保值和避险等功能,目前是世界各国储备资产的重要组成部分。黄金期货具有规避风险、获取收益的作用。黄金期货市场不仅对黄金现货市场具有重要的导向作用,而且对完善货币市场、外汇市场,对提高金融市场国际吸引力,对国民经济的又好又快发展,都具有重大意义。本文运用两状态的马尔可夫状态变换模型以及支持向量回归模型来分析期货黄金的走势上涨或者下跌的趋势,重要将使用的方法为复合似然函数,可以对国内黄金期货投资者提供一种预测方法。
Gold has good functions of circulation and hedging. It is an important part of the world’s reserve assets. Gold futures have the function of avoiding risk and getting benefits. Gold futures market not only has an important role in the gold spot market, but also has great significance for improving money market and foreign exchange market, national economy and international financial markets. In this paper, we forecast the trend of the gold futures using support vector regression model and the two states of the Markov state transition model, the latter model uses composite likelihood function. This model can provide a good prediction method for the domestic gold futures investors.

References

[1]  王中香, 王凤, 何穗. 基于神经网络的黄金期货价格的预测[J]. 湖北师范学院学报(自然科学版), 2009, 29(3): 85-88.
[2]  徐伟. 中国黄金期货价格发现功能的实证研究[D]: 硕士学位论文. 杭州: 浙江大学, 2009.
[3]  高杨. 我国黄金期货市场运行效率的实证研究[D]: 硕士学位论文. 北京: 首都经济贸易大学, 2009.
[4]  祝合良, 许贵阳. 中国黄金期货市场价格发现功能实证研究[J]. 首都经济贸易大学学报 2010(5): 44-52.
[5]  刘飞, 吴卫锋, 王开科. 我国黄金期货市场定价效率与价格发现功能测算——基于5分钟高频数据的实证研究[J]. 国际金融研究, 2013(4): 74-82.
[6]  仲维凯. 国际黄金价格的影响因素分析与预测[D]: 硕士学位论文. 昆明: 云南大学, 2015.
[7]  Hamilton, J. (1989) A New Approach to the Economic Analysis of Nonstationary time Series and the Business Cycle. Econometrica, 57, 357-384.
http://dx.doi.org/10.2307/1912559
[8]  Gray, S. (1996) Modeling the Conditional Distribution of Interest Rates as a Regime-Switching Process. Journal of Financial Economics, 42, 27-62.
http://dx.doi.org/10.1016/0304-405X(96)00875-6
[9]  Hassan, M.R., Nath, B. and Kirley, M. (2007) A Fusion Model of HMM, ANN and GA for Stock Market Forecasting. Expert Systems with Applications, 33, 171-180.
http://dx.doi.org/10.1016/j.eswa.2006.04.007
[10]  Dueker, M. and Neely, C.J. (2007) Can Markov Switching Models Predict Excess Foreign Exchange Returns? Journal of Banking & Finance, 31, 279-296.
http://dx.doi.org/10.1016/j.jbankfin.2006.03.002
[11]  许立平, 罗明志. 基于ARIMA模型的黄金价格短期分析预测[J]. 财经科学, 2011(1): 26-34.
[12]  周茂华, 刘骏民, 许平祥. 基于GARCH族模型的黄金市场的风险度量与预测研究[J]. 国际金融研究, 2011(5): 87-96.
[13]  Zou, W. and Chen, J. (2013) A Markov Regime-Switching Model for Crude-Oil Markets: Comparison of Composite Likelihood and Full Likelihood. The Canadian Journal of Statistics, 2, 353-367.
http://dx.doi.org/10.1002/cjs.11173
[14]  杨金芳, 翟永杰, 王东风, 徐大平. 基于支持向量回归的时间序列预测[J]. 中国电机工程学报, 2005, 25(17): 110- 114.
[15]  李永娜. 基于支持向量机的回归预测综述[J]. 信息通信, 2014(11): 32-33.
[16]  Zucchini, W. and MacDonald, I.L. (2009) Hidden Markov Models for Time dSeries: An Introduction Using R. CRC Press, New York.
http://dx.doi.org/10.1201/9781420010893
[17]  Chen, J. and Wang, P. (2012) Composite Likelihood Approach for the Analysis of Exchange Rates. Working Paper, University of British Columbia.
[18]  Baum, L.E., Petrie, T., Soules, G. and Weiss, N. (1970) A Maximum Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. Annals of Mathematical Statistics, 41, 164-171.
http://dx.doi.org/10.1214/aoms/1177697196

Full-Text

comments powered by Disqus