全部 标题 作者
关键词 摘要


Distortions and Deformations of Metaled Meso-Substituted and Unsubstituted Porphyrins and Derivatives in Crystal Structures

DOI: 10.4236/csta.2016.51001, PP. 1-15

Keywords: Metaled Meso-Substituted and Unsubstituted Porphyrins and Derivates, Crystals Structures, Distortions and Bonds Angular Deformations

Full-Text   Cite this paper   Add to My Lib

Abstract:

Experimental crystallographic structural parameters of a range of metaled meso-substituted and unsubstituted porphyrins were reviewed to show how far the meso-substitution by any functional group and the insertion of metal in the porphyrins core macrocycle may affect the geometry. The analysis of twists and angles has shown two kinds of distortions: external [T(Cβ-Cα-Cmeso-Xn) and T(Cβ-Cα-Cmeso-Cα)] and internal [T(Nm-Cα-Cmeso-Xn) and T(Nn-Cα-Cmeso-Cα)] with averages of [+6° and 6°] and [5° and +5°], respectively.

\"\"

In the meso-substituted case, the external and internal twists Cβ-Cα-Cmeso-X and N-Cα-Cmeso-X, respectively are oppositely orientated. Similar effect is observed in meso-unsubstituted of Cβ-Cα- Cmeso-H and N-Cα-Cmeso-H. However, the external distortions are more significant than internal. Considering the same order, the limit of distortions is [97° and 132° (48°)] for external and [91° (89

References

[1]  Baberschke, K. (2009) Magnetic Switching of Fe-Porphyrin Molecules Adsorbed on Surfaces: An XAFS and XMCD Study. Journal of Physics: Conference Series, 190, Article ID: 012012.
http://dx.doi.org/10.1088/1742-6596/190/1/012012
[2]  Winters, M.U., Karnbratt, J., Eng, M., Wilson, C.J., Anderson, H.L. and Albinsson, B. (2007) Photophysics of a Butadiyne-Linked Porphyrin Dimer: Influence of Conformational Flexibility in the Ground and First Singlet Excited State. The Journal of Physical Chemistry C, 111, 7192-7199.
http://dx.doi.org/10.1021/jp0683519
[3]  Shelnutt, J.A., Song, X.Z., Ma, J.G., Jia, S.L., Jentzen, W. and Medforth, C.J. (1998) Nonplanar Porphyrins and Their Significance in Proteins. Chemical Society Reviews, 27, 31-42.
http://dx.doi.org/10.1039/a827031z
[4]  Adilov, S. and Thalladi, V.R. (2007) Layered Porphyrin Coordination Polymers Based on Zinc-Nitro Recognition: Reversible Intercalation of Nitrobenzene. Crystal Growth & Design, 7, 481-484.
http://dx.doi.org/10.1021/cg0607957
[5]  Senge, M.O., Ryan, A.A., Letchford, K.A., MacGowan, S.A. and Mielke, T. (2014) Chlorophylls, Symmetry, Chirality, and Photosynthesis. Symmetry, 6, 781-843.
http://dx.doi.org/10.3390/sym6030781
[6]  Slota, R., Broda, M.A., Dyrda, G., Ejsmont, K. and Mele, G. (2011) Structural and Molecular Characterization of Meso-Substituted Zinc Porphyrins: A DFT Supported Study. Molecules, 16, 9957-9971.
http://dx.doi.org/10.3390/molecules16129957
[7]  Tsalu, P.V., Nsimba, B.M., Mwanangombo, D.T., Tshilanda, D.D., Mpiana, P.T. and Yav, Z.G. (2015) Correlation between Structure and Crystallization of Porphyrins and Derivatives. Journal of Physical and Chemical Sciences, 3I4.
http://dx.doi.org/10.15297/JPCS.V3I4.03
[8]  Barbee, J. and Kuznetsov, A.E. (2012) Revealing Substituent Effects on the Electronic Structure and Planarity of Ni-Porphyrins. Computational and Theoretical Chemistry, 981, 73-85.
http://dx.doi.org/10.1016/j.comptc.2011.11.049
[9]  Nsimba, B.M., Tsalu, P.V., Mwanangombo, D.T., Atibu, E.K., Tshibangu, D.S.T., Kayembe, K., Basosila, N.L., Mihigo, S.O. and Mpiana, P.T. (2015) Electron Withdrawing Groups and Steric Effects on the Methanogenic Toxicity. American Chemical Science Journal, 10(1), Article No. ACSJ.21375, 1-8.
http://dx.doi.org/10.9734/ACSJ/2016/21375
[10]  Nsimba, B.M., Kayembe, K., Basosila, N.L., Mihigo, S.O., Mbala, B.M., Mulaji, C.K., Tsalu, P.V., Mvingu, B.K. and Mpiana, P.T. (2015) Electronic Effects of Substituted Aromatic Ring on the Methanogenic Toxicity. Journal of Physical and Chemical Sciences, 3I2.
http://dx.doi.org/10.15297/JPCS.V3I2.02
[11]  Bhyrappa, P. and Arunkumar, C. (2010) Structural and Electrochemical Properties of β-Tetrabromo-mesotetrakis (4-alkyloxyphenyl)porphyrins and Their Metal Complexes. Journal of Chemical Sciences, 122, 233-238.
http://dx.doi.org/10.1007/s12039-010-0027-6
[12]  Degtyarenko, I., Biarnes, X., Nieminen, R.M. and Rovira, C. (2008) Density-Functional Molecular Dynamics Studies of Biologically Relevant Iron and Cobalt Complexes with Macrocyclic Ligands. Coordination Chemistry Reviews, 252, 1497-1513.
http://dx.doi.org/10.1016/j.ccr.2007.10.022
[13]  Chaudhary, A., Patra, R. and Rath, S.P. (2011) Synthesis, Structure and Properties of High-Spin Fe(III) Porphyrin with Non-Equivalent Axial Ligands: Implications for the Hemoproteins. Indian Journal of Chemistry, 50A, 432-437.
[14]  Shelnutt, J.A., Song, X.Z., Ma, J.G., Jia, S.L., Jentzen, W. and Medforth, C.J. (1998) Nonplanar Porphyrins and Their Significance in Proteins. Chemical Society Reviews, 27, 31-42.
http://dx.doi.org/10.1039/a827031z
[15]  Senge, M.O., Ema, T. and Smith, K.M. (1995) Crystal Structure of a Remarkably Ruff Led Nonplanar Porphyrin (Pyridine)[5,10,15,20-tetra (fert-butyl)porphyrinato]zinc(II) . Journal of the Chemical Society, Chemical Communications, 1995, 733-734.
[16]  Senge, M.O., Medforth, C.J., Forsyth, T.P., Lee, D.A., Olmstead, M.M., Jentzen, W., Pandey, R.K., Shelnutt, J.A. and Smith, K.M. (1997) Comparative Analysis of the Conformations of Symmetrically and Asymmetrically Decaand Undecasubstituted Porphyrins Bearing Meso-Alkyl or -Aryl Groups. Inorganic Chemistry, 36, 1149-1163.
http://dx.doi.org/10.1021/ic961156w
[17]  Senge, M.O. (2011) (5-Tert-butylporphyrinato)copper(II), a Nonplanar Porphyrin with Only One Sterically Demanding Meso Residue. Acta Crystallographica, C67, m39-m42.
http://dx.doi.org/10.1107/S0108270111000904
[18]  Drain, C.M., Kirmaier, C., Medforth, C.J., Nurco, D.J., Smith, K.M. and Holten, D. (1996) Dynamic Photophysical Properties of Conformationally Distorted Nickel Porphyrins. Nickel(II) Dodecaphenylporphyrin. The Journal of Physical Chemistry, 100, 11984-11993.
http://dx.doi.org/10.1021/jp960735j
[19]  Sun, Z.C., She, Y.B., Zhou, Y., Song, X.F. and Li, K. (2011) Synthesis, Characterization and Spectral Properties of Substituted Tetraphenylporphyrin Iron Chloride Complexes. Molecules, 16, 2960-2970.
http://dx.doi.org/10.3390/molecules16042960
[20]  Bhyrappa, P., Wilson, S.R. and Suslick, K.S. (1997) Hydrogen-Bonded Porphyrinic Solids: Supramolecular Networks of Octahydroxy Porphyrins. Journal of the American Chemical Society, 119, 8492-8502.
http://dx.doi.org/10.1021/ja971093w
[21]  Allen, F.H. (2002) The Cambridge Structural Database: A Quarter of a Million Crystal Structures and Rising. Acta Crystallographica Section B, B58, 380-388.
http://dx.doi.org/10.1107/S0108768102003890
[22]  Sykes, R.A., McCabe, P., Allen, F.H., Battle, G.M., Ian, J.B. and Wood, P.A. (2011) New Software for Statistical Analysis of Cambridge Structural Database Data. Journal of Applied Crystallography, 44, 882-886.
http://dx.doi.org/10.1107/S0021889811014622
[23]  Battle, G.M., Allen, F.H. and Ferrence, G.M. (2011) Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 3. The Cambridge Structural Database System: Information Content and Access Software in Educational Applications. Journal of Chemical Education, 88, 886-890.
http://dx.doi.org/10.1021/ed1011019
[24]  Ian, R.T., Ian, J.B., Cole, J.C., Macrae, C.F., Pidcock, E. and Wood, P.A. (2010) WebCSD: The Online Portal to the Cambridge Structural Database. Journal of Applied Crystallography, 43, 362-366.
http://dx.doi.org/10.1107/S0021889810000452
[25]  Battle, G.M., Ferrence, G.M. and Allen, F.H. (2010) Applications of the Cambridge Structural Database in Chemical Education. Journal of Applied Crystallography, 43, 1208-1223.
http://dx.doi.org/10.1107/S0021889810024155
[26]  Battle, G.M., Allen, F.H. and Ferrence, G.M. (2010) Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 2. Teaching Units That Utilize an Interactive Web-Accessible Subset of the Cambridge Structural Database. Journal of Chemical Education, 87, 813-818.
http://dx.doi.org/10.1021/ed100257t
[27]  Battle, G.M., Allen, F.H. and Ferrence, G.M. (2011) Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 4. Examples of Discovery-Based Learning Using the Complete Cambridge Structural Database. Journal of Chemical Education, 88, 891-897.
http://dx.doi.org/10.1021/ed1011025
[28]  Battle, G.M., Allen, F.H. and Ferrence, G.M. (2010) Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 1. An Interactive Web-Accessible Teaching Subset of the Cambridge Structural Database. Journal of Chemical Education, 87, 809-812.
http://dx.doi.org/10.1021/ed100256k
[29]  Battle, G.M. and Allen, F.H. (2012) Learning about Intermolecular Interactions from the Cambridge Structural Database. Journal of Chemical Education, 89, 38-44.
http://dx.doi.org/10.1021/ed200139t
[30]  Egli, M. (2010) Diffraction Techniques in Structural Biology. Overview for Unit 7 “Biophysical Analysis of Nucleic Acids”. Current Protocols in Nucleic Acid Chemistry, 41, 7.13.1-7.13.35.
http://dx.doi.org/10.1002/0471142700.nc0713s41

Full-Text

comments powered by Disqus