All Title Author
Keywords Abstract


Literature Review on Furfural Production from Lignocellulosic Biomass

DOI: 10.4236/nr.2016.73012, PP. 115-129

Keywords: Furfural, Xylose, Lignocellulosic Biomass, Biorefinery

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of renewable sources for obtainment of chemicals, biofuels, materials and energy has become each time larger due to environmental, political and economical problems of non-renewable energies utilization. Among several products that can be obtained from lignocellulosic biomass, which is a renewable source, there is furfural, a chemical from which many other value added chemical products can be obtained. The main route for furfural production consists of an acid hydrolysis of hemicelluloses present in lignocellulosic biomass to obtain xylose, which goes through a dehydration reaction to produce furfural. Due to the presence of an aldehyde group and a conjugated system of double bounds, furfural can go through several reactions, allowing the production of a range of value added products. In this sense, this article performs a review about mechanisms of furfural production from lignocellulosic biomass, highlighting its chemical properties which enable its utilization in different industrial applications of economic interest.

References

[1]  Santos, F., Colodette, J. and Queiroz, J.H. (2013) Bioenergia e Biorrefinaria—Cana-de-Açúcar e Espécies Florestais. Viçosa.
[2]  Alves, J.O. (2007) Eco-eficiência na produção de energia com biomassa de mamona: além do biodiesel. M.S. Thesis, Salvador University, Salvador.
[3]  Ekpeni, L.E.N., Benyounis, K.Y., Nkem-Ekpeni, F., Stokes, J. and Olabi, A.G. (2014) Energy Diversity through Renewable Energy Source (RES)—A Case Study of Biomass. Energy Procedia, 61, 1740-1747.
http://dx.doi.org/10.1016/j.egypro.2014.12.202
[4]  Ministério De Minas e Energia (2014) Brasil é o 4o país em produção de fontes renováveis de energia. MME WEBSITE.
http://www.mme.gov.br/web/guest/pagina-inicial/outras-noticas/-/asset_publisher/32hLrOzMKwWb/
content/brasil-e-o-4-pais-em-producao-de-fontes-renovaveis-de-energia
[5]  Petrobras. Produção de Biocombustíveis.
http://www.petrobras.com.br/pt/nossas-atividades/areas-de-atuacao/producao-de-biocombustiveis
[6]  Maity, S.K. (2015) Opportunities, Recent Trends and Challenges of Integrated Biorefinery: Part I. Renewable and Sustainable Energy Reviews, 43, 1427-1445.
http://dx.doi.org/10.1016/j.rser.2014.11.092
[7]  Neureiter, M., Danner, H., Thomasser, C., Aidi, B. and Braun, R. (2002) Dilute-Acid Hydrolysis of Sugarcane Bagasse at Varying Conditions. Applied Biochemistry and Biotechnology, 98, 49-58.
http://dx.doi.org/10.1385/ABAB:98-100:1-9:49
[8]  Banerjee, R. and Pandey, A. (2002) Bio-Industrial Application of Sugarcane Bagasse: A Technological Perspective. International Sugar Journal, 104, 64-70.
[9]  Rodrigues, F.A. (2007) Avaliação da tecnologia de hidrólise ácida de bagaço de cana. M.S. Thesis, State University of Campinas, Campinas.
[10]  Santos, F.A., Queiróz, J.H., Colodette, J.L., Fernandes, S.A., Guimarães, V.M. and Rezende, S.T. (2012) Potencial da palha de cana-de-açúcar para produção de etanol. Química Nova, 35, 1004-1010.
http://dx.doi.org/10.1590/S0100-40422012000500025
[11]  Yan, K., Wu, G., Lafleur, T. and Jarvis, C. (2014) Production, Properties and Catalytic Hydrogenation of Furfural to Fuel Additives and Value-Added Chemicals. Renewable and Sustainable Energy Reviews, 38, 663-676.
http://dx.doi.org/10.1016/j.rser.2014.07.003
[12]  Raman, J.K. and Gnansounou, E. (2015) Furfural Production from Empty Fruit Bunch—A Biorefinery Approach. Industrial Crops and Products, 69, 371-377.
http://dx.doi.org/10.1016/j.indcrop.2015.02.063
[13]  Ribeiro, P.R., Carvalho, J.R.M., Geris, R., Queiroz, V. and Fascio, M. (2012) Furfural—Da biomassa ao laboratório de química organica. Química Nova, 35, 1046-1051.
http://dx.doi.org/10.1590/S0100-40422012000500033
[14]  Win, D.T. (2005) Furfural—Gold from Garbage. AU Journal of Technology, 8, 185-190.
[15]  Shittu, A.A. (2010) Catalytic Conversion of Hemicellulosic Sugars into Furfural in Ionic Liquid Media. M.S. Thesis, University of Toledo, Toledo.
[16]  Dutta, S., De, S., Saha, B. and Alam, M.I. (2012) Advances in Conversion of Hemicellulosic Biomass to Furfural and Upgrading to Biofuels. Catalysis Science and Technology, 2, 2025-2036.
http://dx.doi.org/10.1039/c2cy20235b
[17]  Forster-Carneiro, T., Berni, M.D., Dorileo, I.L. and Rostagno, M.A. (2013) Biorefinery Study of Availability of Agriculture Residues and Wastes for Integrated Biorefineries in Brazil. Resources, Conservation and Recycling, 77, 78-88.
http://dx.doi.org/10.1016/j.resconrec.2013.05.007
[18]  Liu, L., Sun, J., Cai, C., Wang, S., Pei, H. and Zhang, J. (2009) Corn Stover Pretreatment by Inorganic Salts and Its Effects on Hemicellulose and Cellulose Degradation. Bioresource Technology, 100, 5865-5871.
http://dx.doi.org/10.1016/j.biortech.2009.06.048
[19]  Wondu Business and Technology Services (2006) Furfural Chemicals and Biofuels from Agriculture. Rural Industries Research and Development Corporation, 06/127, Sydney, 39.
[20]  Montané, D., Salvadó, J., Torras, C. and Farriol, X. (2002) High-Temperature Dilute-Acid Hydrolysis of Olive Stones for Furfural Production. Biomass and Bioenergy, 22, 295-304.
http://dx.doi.org/10.1016/S0961-9534(02)00007-7
[21]  Eichler, P., Santos, F., Toledo, M., Zerbin, P., Schmitz, G., Alves, C., Ries, L. and Gomes, F. (2015) Produção do biometanol via gaseificação de biomassa lignocelulósica. Quimíca Nova, 38, 828-835.
[22]  Phitsuwan, P., Sakka, K. and Ratanakhanokchai, K. (2013) Improvement of Lignocellulosic Biomass in Planta: A Review of Feedstocks, Biomass Recalcitrance, and Strategic Manipulation of Ideal Plants Designed for Ethanol Production And Processability. Biomass and Bioenergy, 58, 390-405.
http://dx.doi.org/10.1016/j.biombioe.2013.08.027
[23]  Rambo, M.K.D., Schmidt, F.L. and Ferreira, M.M.C. (2015) Analysis of the Lignocellulosic Components of Biomass Residues for Biorefinery Opportunities. Talanta, 144, 696-703.
http://dx.doi.org/10.1016/j.talanta.2015.06.045
[24]  Yang, S.-T. and Yu, M. (2013) Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers. John Wiley & Sons, New Jersey.
[25]  Mabee, W.E., Mcfarlane, P.N. and Saddler, J.N. (2011) Biomass Availability for Lignocellulosic Ethanol Production. Biomass and Bioenergy, 35, 4519-4529.
http://dx.doi.org/10.1016/j.biombioe.2011.06.026
[26]  Mood, S.H., Golfeshan, A.H., Tabatabaei, M., Jouzani, G.S., Najafi, G.H., Gholamib, M. and Ardjmand, M. (2013) Lignocellulosic Biomass to Bioethanol, a Comprehensive Review with a Focus on Pretreatment. Renewable and Sustainable Energy Reviews, 27, 77-93.
http://dx.doi.org/10.1016/j.rser.2013.06.033
[27]  Santos, F.A., Queiroz, J.H., Colodette, J.L., Manfredi, M., Queiroz, M.E.L.R., Caldas, C.S. and Soares, F.E.F. (2014) Otimização do pré-tratamento hidrotérmico da palha de cana-de-açúcar visando à Produção de etanol celulósico. Química Nova, 37, 56-62.
http://dx.doi.org/10.1590/S0100-40422014000100011
[28]  Corbett, D.B., Kohan, N., Machado, G., Jing, C., Nagardeolekar, A. and Bujanovic, B. (2015) Chemical Composition of Apricot Pit Shells and Effect of Hot-Water Extraction. Energies, 8, 9640-9654.
http://dx.doi.org/10.3390/en8099640
[29]  Buckeridge, M.S., Santos, W.D. and Souza, A.P. (2010) As Rotas Para O Etanol Celulósico No Brasil. In: Cortez, L.A.B., Ed., Bioetanol de cana-de-açúcar: P&D para Produtividade Sustentabilidade, Edgard Blücher, São Paulo, 365-380.
[30]  Fitzpatrick, M., Champagne, P., Cunningham, M.F. and Whitney, R.A. (2010) A Biorefinery Processing Perspective: Treatment of Lignocellulosic Materials for the Production of Value-Added Products. Bioresource Technology, 101, 8915-8922.
http://dx.doi.org/10.1016/j.biortech.2010.06.125
[31]  Alvim, J.C., Alvim, F.A.L.S., Sales, V.H.G., Sales, P.V.G., Oliveira, E.M. and Costa, A.C.R. (2014) Biorrefinarias: Conceitos, classificação, matérias primas e produtos. Journal of Bioenergy and Food Science, 1, 61-77.
[32]  Cheali, P., Posada, J.A., Gernaey, K.V. and Sin, G. (2015) Upgrading of Lignocellulosic Biorefinery to Value Added Chemicals: Sustainability and Economics of Bioethanol-Derivatives. Biomass and Bioenergy, 75, 282-300.
http://dx.doi.org/10.1016/j.biombioe.2015.02.030
[33]  Vaz Jr., S. (2011) Biorrefinarias: cenários e perspectivas. Embrapa Agroenergia, Brasília, DF.
[34]  García, A., Alriols, M.G. and Labidi, J. (2014) Evaluation of Different Lignocellulosic Raw Materials as Potential Alternative Feedstocks in Biorefinery Processes. Industrial Crops and Products, 53, 102-110.
http://dx.doi.org/10.1016/j.indcrop.2013.12.019
[35]  Wang, W., Ren, J., Li, H., Deng, A. and Sun, R. (2015) Direct Transformation of Xylan-Type Hemicelluloses to Furfural via SnCl4 Catalysts in Aqueous and Biphasic Systems. Bioresource Technology, 183, 188-194.
http://dx.doi.org/10.1016/j.biortech.2015.02.068
[36]  Barbosa, B.M., Colodette, J.L., Longue Jr., D., Gomes, F.J.B. and Martino, D.C. (2014) Preliminary Studies on Furfural Production from Lignocellulosics. Journal of Wood Chemistry and Technology, 34, 178-190.
http://dx.doi.org/10.1080/02773813.2013.844167
[37]  Zhang, H., Liu, X., Lu, M., Hu, X., Lu, L., Tian, X. and Ji, J. (2014) Role of Brønsted Acid in Selective Production of Furfural in Biomass Pyrolysis. Bioresource Technology, 169, 800-803.
http://dx.doi.org/10.1016/j.biortech.2014.07.053
[38]  Mesa, L., Morales, M., González, E., Cara, C., Romero, I., Castro, E. and Mussatto, S.I. (2014) Restructuring the Processes for Furfural and Xylose Production from Sugarcane Bagasse in a Biorefinery Concept for Ethanol Production. Chemical Engineering and Processing, 85, 196-202.
http://dx.doi.org/10.1016/j.cep.2014.07.012
[39]  Agirrezabal-Telleria, I., Gandarias, I. and Arias, P.L. (2014) Heterogeneous Acid-Catalysts for the Production of Furan-Derived Compounds (Furfural and Hydroxymethylfurfural) from Renewable Carbohydrates: A Review. Catalysis Today, 234, 42-58.
http://dx.doi.org/10.1016/j.cattod.2013.11.027
[40]  Kaur, I. and Ni, Y. (2015) A Process to Produce Furfural and Acetic Acid from Pre-Hydrolysis Liquor of Kraft Based Dissolving Pulp Process. Separation and Purification Technology, 146, 121-126.
http://dx.doi.org/10.1016/j.seppur.2015.03.034
[41]  Baktash, M.M., Ahsan, L. and Ni, Y. (2015) Production of Furfural from an Industrial Pre-Hydrolysis Liquor. Separation and Purification Technology, 149, 407-412.
http://dx.doi.org/10.1016/j.seppur.2015.06.003
[42]  Li, H., Dai, Q., Ren, J., Jian, L., Peng, F., Sun, R. and Liu, G. (2016) Effect of Structural Characteristics of Corncob Hemicelluloses Fractionated by Graded Ethanol Precipitation on Furfural Production. Carbohydrate Polymers, 136, 203-209.
http://dx.doi.org/10.1016/j.carbpol.2015.09.045
[43]  Li, H., Ren, J., Zhong, L., Sun, R. and Liang, L. (2015) Production of Furfural from Xylose, Water-Insoluble Hemicelluloses and Water-Soluble Fraction of Corncob via a Tin-Loaded Montmorillonite Solid Acid Catalyst. Bioresource Technology, 176, 242-248.
http://dx.doi.org/10.1016/j.biortech.2014.11.044
[44]  Molina, M.J.C., Granados, M.L., Gervasini, A. and Carniti, P. (2015) Exploitment of Niobium Oxide Effective Acidity for Xylose Dehydration to Furfural. Catalysis Today, 254, 90-98.
http://dx.doi.org/10.1016/j.cattod.2015.01.018
[45]  Chen, H., Qin, L. and Yu, B. (2015) Furfural Production from Steam Explosion Liquor of Rice Straw by Solid Acid Catalysts (HZSM-5). Biomass and Bioenergy, 73, 77-83.
http://dx.doi.org/10.1016/j.biombioe.2014.12.013
[46]  Gao, H., Liu, H., Pang, B., Yu, G., Du, J., Zhang, Y., Wang, H. and Mu, X. (2014) Production of Furfural from Waste Aqueous Hemicellulose Solution of Hardwood over ZSM-5 Zeolite. Bioresource Technology, 172, 453-456.
http://dx.doi.org/10.1016/j.biortech.2014.09.026
[47]  Yan, K. and Chen, A. (2013) Efficient Hydrogenation of Biomass-Derived Furfural and Levulinic Acid on the Facilely Synthesized Noble-Metal-Free Cu-Cr Catalyst. Energy, 58, 357-363.
http://dx.doi.org/10.1016/j.energy.2013.05.035
[48]  Gomes, M.G. (2009) Síntese de poliésteres a partir do ácido 2,5-Furanodicarboxílico. M.S. Thesis, Aveiro University, Portugal.
[49]  Carmo, C.B. (2013) Mapeamento tecnológico de polímeros furanicos a partir de biomassa. M.S. Thesis., Federal University of Rio de Janeiro, Rio de Janeiro.
[50]  Xiu, S. and Shahbazi, A. (2012) Bio-Oil Production and Upgrading Research: A Review. Renewable and Sustainable Energy Reviews, 16, 4406-4414.
http://dx.doi.org/10.1016/j.rser.2012.04.028
[51]  Taylor, M.J., Durndell, L.J., Isaacs, M.A., Parlett, C.M.A., Wilson, K., Lee, A.F. and Kyriakou, G. (2016) Highly Selective Hydrogenation of Furfural over Supported Pt Nanoparticles under Mild Conditions. Applied Catalysis B: Environmental, 180, 580-585.
http://dx.doi.org/10.1016/j.apcatb.2015.07.006
[52]  Antunes, M.M., Lima, S., Neves, P., Magalhaes, A.L., Fazio, E., Neri, F., Pereira, M.T., Silva, A.F., Silva, C.M., Rocha, S.M., Pillinger, M., Urakawa, A. and Valente, A.A. (2016) Integrated Reduction and Acid-Catalysed Conversion of Furfural in Alcohol Medium Using Zr, Al-Containing Ordered Micro/Mesoporous Silicates. Applied Catalysis B, Environmental, 182, 485-503.
[53]  Hayes, D.J., Ross, J., Hayes, M.H.B. and Fitzpatrick, S. (2008) The Biofine Process: Production of Levulinic Acid, Furfural and Formic Acid from Lignocellulosic Feedstocks. In: Biorefineries-Industrial Processes and Products: Status Quo and Future Directions, Wiley VCH, Weinheim.
[54]  Bhogeswararao, S. and Srinivas, D. (2015) Catalytic Conversion of Furfural to Industrial Chemicals over Supported Pt and Pd Catalysts. Journal of Catalysis, 327, 65-77.
http://dx.doi.org/10.1016/j.jcat.2015.04.018
[55]  Silva, J.F.L., Selicani, M.A., Junqueira, T.L., et al. (2015) Integração da produção de furfural em uma biorrefinaria de cana-de-açúcar. São Paulo, Brasil.
http://dx.doi.org/10.5151/chemeng-cobeqic2015-324-33923-264473

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal