All Title Author
Keywords Abstract

电子学报  2006 

一种基于粒子群优化方法的改进量子遗传算法及应用

, PP. 897-901

Keywords: 量子遗传算法,量子计算,粒子群优化,0/1背包问题,稀疏分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用粒子群优化(PSO)方法代替量子门来更新量子比特状态,得到一种改进的量子遗传算法(QGA)——PSQGA,并根据QGA自身概率特性,引入了最优解方差函数来评价该算法的稳定性能.利用四种典型连续函数寻优问题和0/1背包问题,分别对PSQGA和改进的使用量子门的量子遗传算法(IQGA)进行了测试;并将它们应用到图像稀疏分解的实例中.结果表明,PSQGA算法的寻优能力及稳定性均优于IQGA,且具有更好的收敛性以及更强的连续空间搜索能力,适合于求解复杂优化问题.

Full-Text

comments powered by Disqus