All Title Author
Keywords Abstract


FBM湍流模型水翼空化绕流数值研究

DOI: 10.3969/j.issn.1006-7043.201206013

Keywords: 空化流, 滤波器湍流模型, 湍流粘度, 云空泡脱落

Full-Text   Cite this paper   Add to My Lib

Abstract:

为准确模拟云空泡脱落的非定常特性,引入混合密度修正函数,建立了基于独立空间滤波尺度的滤波器湍流模型.联立质量输运型空化模型,采用RNG k-ε湍流模型和滤波器湍流模型数值研究了Clark-y型水翼空化绕流,给出了典型工况下时均速度场、云空化工况下时变空泡形态以及水翼的升、阻力系数等流场和动力特性参数.与实验对比表明,2种湍流模型对水翼稳态空化流场的预测差异较小,RNG ??k-ε??湍流模型不能捕捉到云空泡的非稳态特征,滤波器湍流模型能更好地调节多相流场的湍流粘度,准确捕捉云空泡周期性的脱落细节.

References

[1]  WU J Y, UTTURKAR Y, SHYY W. Assessment of modelling strategies for cavitating flow around a hydrofoil [C]//5th International Symposium on Cavitation. London: Oxford University Press, 2003: 1-12.
[2]  WU J Y, UTTURKAR Y, SENOCAK I, et al. Impact of turbulence and compressibility modelling on three dimensional cavitating flow computations [C]//33rd AIAA Fluid Dynamics Conference and Exhibit. Orlando FL, USA, 2003: 127-153.
[3]  COUTIER-DELGOSHA O, FORTES-PATELLA R, REBOUND J L. Evaluation of the turbulence model in influence on the numerical simulations of unsteady cavitation [J]. Journal of Fluids Engineering, 2003, 125(1): 38-45.
[4]  SMAGORINSKY J. General circulation experiments with the primitive equations I: the basic experiment [J]. Monthly Weather Review, 1963, 91(1): 99-164.
[5]  WANG G Y, STOJA-STARZEWSI M. Large eddy simulation of a sheet / cloud cavitation on a NACA0015 hydrofoil [J]. Applied Mathematical Modelling, 2007, 31(3): 417-447.
[6]  JOHANSEN S T, WU J Y, SHYY W. Filter-based unsteady RANS computations [J]. International Journal of Heat and Fluid Flow, 2004, 25(1): 10-21.
[7]  WU J Y, WANG G Y, SHYY W. Time-dependent turbulent cavitating flow computations with interfacial transport and filter based models [J]. International Journal for Numerical Methods in Fluids, 2005, 49(7): 739-761.
[8]  黄彪, 王国玉, 张博, 等. FBM湍流模型在云状空化流动中的应用于评价 [J]. 机械工程学报, 2010, 46(8): 147-153.? HUANG Biao, WANG Guoyu, ZHANG Bo, et al. Evaluation and application of filter based turbulence model for computations of cloud cavitating flows [J]. Journal of Mechanical Engineering, 2010, 46(8): 147-153.
[9]  YAKHOT V, ORZAG S A. Renormalization group analysis of turbulence: base theory [J]. Journal of Scientific Computing, 1986, 1(1): 3-51.
[10]  SINGHAL A K, ATHAVALE M M, LI H Y, et al. Mathematical basis and validation of the full cavitation model [J]. Journal of Fluids Engineering, 2002, 124(3): 616-624.
[11]  WANG G Y, SENOCAK I, SHYY W, et al. Dynamics of attached turbulent cavitating flows [J]. Progress in Aerospace Sciences, 2001, 37(6): 551-581.
[12]  WANG G Y, ZHANG B, HUANG B, et al. Unsteady dynamics of cloudy cavitating flows around a hydrofoil [C]//Proceedings of the 7th International Symposium on Cavitation. Michigan, USA, 2009: 1-8.
[13]  WU J Y, SHYY W, JOHANSEN S T. Filter-based unsteady RANS computations for single-phase and cavitating flows [C]//2004 ASME Heat Transfer/Fluids Engineering Summer Conference. Charlotte, USA, 2004: 469-477.
[14]  COUTIER-DELGOSHA O. Numerical prediction of cavitation flow on a two-dimensional symmetrical hydrofoil and comparison to experiments [J]. Journal of Fluids Engineering, 2007, 129(3): 279-291.

Full-Text

comments powered by Disqus