All Title Author
Keywords Abstract


光滑Weyl和的分数幂次均值数值边界(英文)

Keywords: 允许指数,均值,光滑Weyl和,数值边界

Full-Text   Cite this paper   Add to My Lib

Abstract:

讨论了分数幂次光滑Weyl和的均值数值边界之间的关系,给出了幂次区间[4,5]中的数时相应均值数值边界的一些新结果.

References

[1]  Hua L K. Additive prime number theory [M]. Science Press, 1957. [2] Vaughan R C. On Waring''s problem for cubes[J]. J. Reine Angew. Math, 1986(365):122-170. [3] Vaughan R C. On Waring''s problem for cubes(II)[J]. J. London Math. Soc, 1989,39(2):205-218. [4] Vaughan R C. A new iterative method in Waring''s problem [J]. Acta Math, 1989,162:1-71. [5] Vaughan R C. A new iterative method in Waring''s problem(II)[J]. J. London Math. Soc, 1989,39(2):219-230. [6] Vaughan R C, Wooley T D. Further improvements in Waring''s problem [J]. Acta Math, 1995,174:147-240. [7] Wooley T D. Breaking classical convexity in Waring''s problem: sums of cubes and quasi-diagonal behavior [J]. Invent. Math, 1995,122:421-451. [8] Liu Jianya, Wooley T D, Yu Gang. The quadratic Waring-Goldbach problem [J]. J. Number Theory, 2004,107(2):298-321. [9] Elsholtz C. The number Γ(k)in Waring''s problem [J]. Acta Arith, 2008,131(1):43-49. [10] Brudern J, Kawada K, Wooley T D. Additive representation in thin sequences. VII. Restricted moments of the number of representations [J]. Tsukuba J. Math. 2008,32(2):383-406. [11] Blomer V, Brudern J, Dietmann R. Sums of smooth squares [J]. Compos. Math, 2009,145(6):1401-1441. [12] Brudern J, Wooley T D. The asymptotic formulae in Waring''s problem for cubes [J]. J. Reine Angew. Math, 2010,647: 1-23. [13] Brudern J, Wooley T D. On Waring''s problem: three cubes and a minicube [J]. J. Nagoya Math, 2010,200:59-91. [14] Liu Yu-Ru, Wooley T D. Waring''s problem in function fields [J]. J. Reine Angew. Math, 2010,638:1-67. [15] Arkhipov G I, Chubarikov V N. On I. M. Vinogradov''s additive problem[J]. Mat. Zametki, 2010,88(3):325-339. [16] Kononen K. More exact solutions to Waring''s problem for finite fields [J]. Acta Arith, 2010,145(2):209-212. [17] Daemen D. The asymptotic formula for localized solutions in Waring''s problem and approximations to Weyl sums [J]. Bull. Lond. Math. Soc, 2010,42(1):75-82. [18] Preobrazhenski S N. A new estimate in I. M. Vinogradov''s mean value theorem[J]. Mat. Zametki, 2011,89(2):285-299.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal