All Title Author
Keywords Abstract


温度对电荷耦合器件的隧穿电阻和隧穿几率的影响

, PP. 815-820

Keywords: 硅基电荷耦合器件,隧穿电阻,隧穿几率

Full-Text   Cite this paper   Add to My Lib

Abstract:

单电子输运器件在集成单电子电路、电学计量和量子信息处理等方面有着广泛的应用前景.金属单电子输运器件具有固定的隧道结,而半导体单电子输运器件则具有可调的隧道结.基于隧穿电阻和隧穿几率的唯象计算公式,详细研究了温度对硅基电荷耦合器件的隧道结的隧穿电阻和隧穿几率的影响,同时讨论了温度和门电压与库仑阻塞条件之间的关系.

References

[1]  Grabert H, Devoret M H. Single Charge Tunneling[M]. New York:Plenum,1991.
[2]  Nishiguchi K, Fujiwara A, Ono Y, et al. Room-temperature-operating data processing circuit based on single-electron transfer and detection with metal-oxide-semiconductor field-effect transistor technology[J]. Appl Phys Lett,2006,88:183101-1-3.
[3]  Mills I M, Mohr P J, Quinn T J, et al. Redefinition of the kilogram: a decision whose time has come[J]. Metrologia,2006,43:227-246.
[4]  Barnes C H W, Shilton J M, Robinson A M. Quantum computation using electrons trapped by surface acoustic waves[J]. Phys Rev,2000,B62:8410-8419.
[5]  Takahashi Y, Ono Y, Fujiwara A, et al. Silicon single-electron devices[J]. J Phys:Condens Matter,2002,14:R995-R1033.
[6]  Pothier H, Lafarge P, Orfila P F, et al. Single electron pump fabrication with ultrasmall normal tunnel junctions[J]. Physica,1991,B169:573-574.
[7]  Geerligs L J, Anderegg V F, Holweg P A M, et al. Frequency-locked turnstile device for single electrons[J]. Phys Rev Lett,1990,64(22):2691-2694.
[8]  Bockrath M, Cobden D H, McEuen P L, et al. Single-electron transport in ropes of carbon nanotubes[J]. Science,1997,275(5308):1922-1925.
[9]  Talyanskii V I, Novikov D S, Simons B D, et al. Quantized adiabatic charge transport in a carbon nanotube[J]. Phys Rev Lett,2001,87(27):276802-1-4.
[10]  Kouwenhoven L P, Johnson A T, van der Vaart N C, et al. Quantized current in a quantum-dot turnstile using oscillating tunnel barriers[J]. Phys Rev Lett,1991,67:1626-1629.
[11]  Takahashi Y, Fujiwara A, Nagase M, et al. Silicon single-electron devices[J]. Int J Electronics,1999,86:605-639.
[12]  Shilton J M, Talyanskii V I, Pepper M, et al. High-frequency single-electron transport in a quasi-one-dimensional GaAs channel induced by surface acoustic waves[J]. J Phys:Condens Matter,1996,8(38):L531-L539.
[13]  高宏雷,李玲,高洁. 准一维电子通道中声电电流的理论计算[J]. 物理学报,2004,53:3505.
[14]  李玲, Kaestner B, Blumenthal M D,等. 一种新型的高频半导体量子点单电子泵[J]. 物理学报,2008,57:1878-1885.
[15]  Zimmerman N M, Hourdakis E, Ono Y, et al. Error mechanisms and rates in tunable-barrier single-electron turnstiles and charge-coupled devices[J]. J Appl Phys,2004,96:5254-5266.
[16]  Fujiwara A, Takahashi Y. Manipulation of elementary charge in a silicon charge-coupled device[J]. Nature,2001,410:560-562.
[17]  Ono Y, Fujiwara A, Nishiguchi K, et al. Manipulation and detection of single electrons for future information processing[J]. J Appl Phys,2005,97:031101-1-19.
[18]  杜磊,庄奕琪. 纳米电子学[M]. 北京:电子工业出版社,2004:24-28.
[19]  Averin D V, Likharev K. Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions[J]. J Low Temp Phys,1986,62:345-373.
[20]  Matveev K A, Glazman L I. Coulomb blockade of activated conduction[J]. Phys Rev,1996,B54:10339-10341.
[21]  Hanson G W. 纳电子学基础[M]. 侯士敏,译. 北京:清华大学出版社,2009:229-234.
[22]  Hermann G. Single charge tunneling: a brief introduction[J]. Z Phys B:Condens Matter,1991,85:319-325.
[23]  蒋建飞. 单电子学[M]. 北京:科学出版社,2007:69-73.
[24]  Fujiwara A, Zimmerman N M, Ono Y, et al. Current quantization due to single-electron transfer in Si-wire charge-coupled devices[J]. Appl Phys Lett,2004,84:1323-1325.

Full-Text

comments powered by Disqus