All Title Author
Keywords Abstract


基于挑战-应答机制的量子密钥分发协议

, PP. 452-458

Keywords: 量子光学,量子密钥分发协议,挑战-应答机制,BB84协议,光子利用率,身份认证

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于BB84协议,利用挑战-应答机制,提出了一种量子密钥分发协议。发送方Alice和接收方Bob通过安全信道共享三个不同的Hash函数(,和),以及随机比特串。在每次密钥分发时,Alice产生随机比特串(挑战信息)和(密钥),结合和,基于BB84协议产生光子串;Alice将和发送给Bob,Bob接收到对应的和光子串;Bob利用,结合和,基于BB84协议对光子串进行测量得到。理想情况下共享密钥。另外,Bob利用,,及产生应答序列;Alice和Bob利用各自拥有的序列及分别产生序列和,并对各自的做更新。在密钥分发过程中光子的利用率为百分百,该协议既有BB84协议类似的安全性,又有单向身份认证功能。

References

[1]  Su Xiaoqin, Guo Guangcan.Quantum communication and quantum computation[J].量子电子学报, 2004, 21(6):706-718
[2]  Wang Jindong, Zhang Zhiming.Unconditional security of quantum key distribution based on practical devices[J].量子电子学报, 2014, 31(4):449-458
[3]  Wootters W K, Zurek W H.A single quantum cannot be cloned[J].Nature, 1982, 299(588):802-803
[4]  Mayers D.Unconditional security in quantum cryptography[J].Journal of the ACM, 2001, 48(3):351-406
[5]  Zhao Long, Cao Zhengwen, Luo Rui, et al.Multi-signature scheme based on quantum proprieties[J].量子电子学报, 2012, 29(1):69-73
[6]  Ma Xiangchun, Sun Shihai, Jiang Musheng, et al.Gaussian-modulated coherent-state measurement-device-independent quantum key distribution[J].Phys. Rev. A, 2014, 89(4):1-9
[7]  Ma Xiangchun, Sun Shihai, Jiang Musheng, et al.Gaussian-modulated coherent-state measurement-device-independent quantum key distribution[J].Phys. Rev. A, 2014, 89(4):1-9
[8]  Djordjevic I B.Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation[J].Optics Express, 2011, 19(15):14277-14289
[9]  Bennett C H, Brassard G.Quantum cryptography: public-key distribution and coin tossing [C]. IEEE International Conference on Computers, Systems and Signal Processing, Banglore, 1984.
[10]  Bennett C H, Bessette F, Brassard G, et al.Experimental quantum cryptography [J]. Journal of cryptography, 1992, 5, 3- 28.
[11]  Ekert A K.Quantum cryptography based on Bell theorem[J].Phys. Rev. Lett., 1991, 67(6):661-663
[12]  Bennett C H.Quantum cryptography using any two nonorthogonal states[J].Phys. Rev. Lett., 1992, 68(21):3121-3124
[13]  Bruss D.Optimal eavesdropping in quantum cryptography with six states[J].Phys. Rev. Lett., 1998, 81(14):3018-3021
[14]  Liu C, Zhang S, Zhao L, et al.Differential-phase-shift quantum key distribution using heralded narrow-band single photons[J].Optics Express, 2013, 21(8):9505-9513
[15]  Hwang W Y.Quantum key distribution with high loss: toward global secure communication[J].Phys. Rev. Lett., 2003, 91(5):7091-7095
[16]  Serna E H.Quantum key distribution from a random seed [J]. arXiv preprint, 2013, arXiv:1311.1582.
[17]  Gong Jing, Zhang Wen, Deng Yuanqing, et al.The BB84 protocol with identity authentication [J]. Optical communication technology (光通信技术), 2010, 4: 60-62 (in Chinese).
[18]  Hu Huapeng, Zhang Jing, Wang Jindong, et al.Experimental quantum key distribution with double protocol[J].物理学报, 2008, 57(9):5605-5611
[19]  Bennett C H, Brassard G, Robert J M.Privacy amplification by public discussion[J].SIAM Journal on Computing, 1988, 17(2):210-229
[20]  Bennett C H, Brassard G, Grepeau C, et al.Generalized privacy amplification[J].IEEE Transacation on Information Theory, 1995, 41(6):1915-1923
[21]  Mala, H.Biclique-based cryptanalysis of the block cipher Squre[J].Information Security, 2014, 8(3):207-212
[22]  Gong Longyan, Pan Jingxin, Liu Beibei, et al.A novel one-time password mutual authentication scheme on sharing renewed finite random sub-passwords[J].Journal of Computer and System Sciences, 2013, 79(1):122-130
[23]  Zhao Feng, Jing Minying, Li Jingling, et al.Estimate for BER of error correcting on finite quantum key[J].量子电子学报, 2014, 31(2):167-172

Full-Text

comments powered by Disqus