All Title Author
Keywords Abstract


基于任意BELL态的量子密钥分配

, PP. 439-444

Keywords: 量子光学,量子通信,量子密钥分配,量子纠缠交换,贝尔测量

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高量子密钥分配的安全性和效率,利用量子纠缠交换的规律,提出了基于纠缠交换的量子密钥分配协议。通信双方通过简单的BELL测量建立起共享密钥,窃听者不可能窃取密钥而不被发现。该协议与其它分配协议的不同在于,可以实现对任意两个BELL态进行BELL测量达到量子密钥分配的目的。协议的实现只需要EPR粒子对,而不需要制备多粒子纠缠态。分析结果表明,此协议只用到两粒子的纠缠态,不需要进行幺正操作,它不仅能够保证密钥分配的安全性,而且简单高效。

References

[1]  Wang J, Zhang Q, Tang C J. Multiparty Controlled Quantum Secure Direct Communication Using Greenberger-Horne-Zeilinger State[J].Optics Communications, 2006, 266: 732- 737.
[2]  龙桂鲁,王川,李岩松,邓富国. 量子安全直接通信[J]. 中国科学,2011,41: 332-342.
[3]  Ji Xin, Zhang Shou. Teleportation of the there-particle entangled state by the two EPR pairs [J]. Chinese Journal of Quantum Electronics(量子电子学报), 2006,23(6) : 816(in Chinese).
[4]  Bennet C H, Brassard G.. Quantum cryptography: Public-key distribution and tossing[C]// IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 1984.
[5]  Bennett C H. Quantum cryptography using any two nonorthogonal states[J].Physical Review Letters, 1992, 68: 3121-3124.
[6]  EKERT A K. Quantum cryptography based on B ell. s theorem [J].Physical Review Letters, 1991, 67: 66663.
[7]  BRUB D. Optimal Eavesdropping in Quantum Cryptography with SixStates[J].Physical Review Letters, 1998, 81: 3108-3021.
[8]  SONG D. Secure key distribution by swapping quantum entanglement[J].Physical Review A, 2004, 69: 034301.
[9]  张德喜,赵秋宇,李晓宇.利用贝尔测量的高效量子密钥分配协议[J].电子科技大学学报,2006,35:917-923.
[10]  GAO G.. Quantum key distribution by comparing Bell states [J].2008, 281: 876-879.
[11]  YUAN H, SONG J, HAN L F, et al. Improving the total efficiency of quantum key distribution by comparing Bell states [J]. Optics Communication, 2008, 281: 4803- 4806.
[12]  Bennett C H, Brassard G, Mermin N D. Quantum Cryptography without Bells Theorem[J]. Physical Review Letter, 1992, 68: 557- 569.
[13]  Hillery M, Buzek V, Berthiaume A. Quantum Secret Sharing[J]. Physical Review A, 1999, 59: 1829-1834.
[14]  林青群, 王发强, 米景隆, 等, 基于随机相位编码的确定性量子密钥分配[J]. 物理学报,2007,56: 5796-5801.
[15]  陶原, 潘炜, 罗斌, 等. 基于W态的网络中任意两个用户间量子密钥分配方案[J]. 电子与信息学报, 2008, 30: 2588-2591.
[16]  Zhu Aidong, Zhang Shou. Quantum key distribution and controlled quantum direct communication applying product state of qutrit [ J]. Chinese Journal of Quantum Electronics(量子电子学报), 2007,24(3) : 316(in Chinese).
[17]  LEE H, HONG C, K IM H, et al. Arbitrated Quantum Signature Scheme With message Recovery [ J]. Physical Review A, 2004,
[18]  321: 295-300.
[19]  Zhou N R, Zeng G H, Zeng W J, et al. Cross-center quantum identification scheme based on teleportation and entanglement swapping. Optics Communications, 2005, 254: 380—388.
[20]  Bostrom K, Felbinger T. Deterministic Secure Direct Communication Using Entanglement[J]. Physical Review Letter, 2002, 89: 187902.
[21]  Wang J, Zhang Q, Tang C J. Quantum Secure Direct Communication Based on Order Rearrangement of Single Photons[J]. Physical Review A, 2006,358: 256-258.
[22]  Nanrun Z, Li J W, LI H G, Xiang W Z, Ye L. Quantum deterministic key distribution protocols based on teleportation and
[23]  entanglement swapping[J]. Optics Communications, 2011,284: 4836–4842.
[24]  Cinelli C, Barbieri M, Martini F D, et al. Realization of hyperentangled two-photon states[J]. International Journal of Laser Physics, 2005,15:124-128.

Full-Text

comments powered by Disqus